Learn More
Temperature is one of key environmental parameters that affect the whole life of fishes and an increasing number of studies have been directed towards understanding the mechanisms of cold acclimation in fish. However, the adaptation of larvae to cold stress and the cold-specific transcriptional alterations in fish larvae remain largely unknown. In this(More)
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of(More)
Expression-independent gene or polyadenylation [poly(A)] trapping is a powerful tool for genome-wide mutagenesis regardless of whether a targeted gene is expressed. Although a number of poly(A)-trap vectors have been developed for the capture and mutation of genes across a vertebrate genome, further efforts are needed to avoid the 3'-terminal insertion bias(More)
Gene trapping is a high-throughput approach to elucidate gene functions by disrupting and recapitulating expression of genes in a target genome. A number of transposon-based gene-trapping systems are developed for mutagenesis in cells and model organisms, but there is still much room for the improvement of their efficiency in gene disruption and mutation.(More)
Hypoxia and temperature stress are two major adverse environmental conditions often encountered by fishes. The interaction between hypoxia and temperature stresses has been well documented and oxygen is considered to be the limiting factor for the thermal tolerance of fish. Although both high and low temperature stresses can impair the cardiovascular(More)
The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in(More)
Enhancer trapping (ET) is a powerful approach to establish tissue- or cell-specific reporters and identify expression patterns of uncharacterized genes. Although a number of enhancer-trapping vectors have been developed and a large library of fish lines with distinct tissue- or cell-specific expression of reporter genes have been generated, the specificity(More)
Galectins constitute a group of lectins with binding specificity for β-galactoside sugars. Galectin-1 is a prototype galectin and the multifunctionality of mammalian galectin-1s is well-known, but only a few of fish galectin-1s have been identified. In this study, we obtained the full-length cDNA and genomic sequence of the galectin-1 gene (designated as(More)
Whole genome transcriptomic studies are powerful for characterizing the molecular mechanisms underlying the physiological effects of chemicals, and are informative for environmental health risk assessment. Alkylating agents are an abundant class of chemicals that can damage DNA in the environment, and are used for anticancer treatments. Currently, little is(More)
Zebrafish has become an excellent model for studying the development and function of inner ear. We report here a zebrafish line in which claudin 7b (cldn7b) locus is interrupted by a Tol2 transposon at its first intron. The homozygous mutants have enlarged otocysts, smaller or no otoliths, slowly formed semicircular canals, and insensitiveness to sound(More)