Learn More
BiVO4 and many other semiconductor materials are ideal visible light responsive semiconductors, but are insufficient for overall water splitting. Upon loading water oxidation cocatalyst, for example Co-borate (denoted as CoBi) used here, onto BiVO4 photoanode, it is found that not only the onset potential is negatively shifted but also the photocurrent and(More)
Photoelectrochemical (PEC) water splitting is an ideal approach for renewable solar fuel production. One of the major problems is that narrow bandgap semiconductors, such as tantalum nitride, though possessing desirable band alignment for water splitting, suffer from poor photostability for water oxidation. For the first time it is shown that the presence(More)
Cocatalysts have been extensively used to promote water oxidation efficiency in solar-to-chemical energy conversion, but the influence of interface compatibility between semiconductor and cocatalyst has been rarely addressed. Here we demonstrate a feasible strategy of interface wettability modification to enhance water oxidation efficiency of the(More)
The solar-to-hydrogen (STH) efficiency of a traditional mono-photoelectrode photoelectrochemical water splitting system has long been limited as large external bias is required. Herein, overall water splitting with STH efficiency exceeding 2.5% was achieved using a self-biased photoelectrochemical-photovoltaic coupled system consisting of an all(More)
The recent discovery of colored TiO2 indicated that the disordered surface layer over the TiO2 particles/photoelectrodes is beneficial for higher photocatalytic performance; however, the role of the disordered surface TiO2 layer is not well understood. Here, we report an electrochemical strategy for tuning the surface structure of TiO2 nanorod arrays (NRAs)(More)
We demonstrate for the first time that a nitrogen-doped tunneled oxide MgTa2O(6-x)N(x) with an absorption edge of ca. 570 nm can drive both water oxidation and reduction half reactions in the presence of scavengers under visible light irradiation, showing great potential in solar water splitting.
The electrode-electrolyte interface chemistry is highly important for photoelectrochemical (PEC) and electrocatalytic water splitting where cations in the electrolyte are often crucial. However, the roles of cations in an electrolyte are much debated and not well-understood. This work reports that the PEC and electrocatalytic water oxidation (WO) activities(More)
One of the major hurdles that impedes the practical application of photoelectrochemical (PEC) water splitting is the lack of stable photoanodes with low onset potentials. Here, we report that the Ni(OH)x/MoO3 bilayer, acting as a hole-storage layer (HSL), efficiently harvests and stores holes from Ta3N5, resulting in at least 24 h of sustained water(More)
An efficient photoanode is a prerequisite for a viable solar fuels technology. The challenges to realizing an efficient photoanode include the integration of a semiconductor light absorber and a metal oxide electrocatalyst to optimize corrosion protection, light trapping, hole transport, and photocarrier recombination sites. To efficiently explore metal(More)
  • 1