Guiguang Ding

Learn More
Transfer learning is established as an effective technology in computer vision for leveraging rich labeled data in the source domain to build an accurate classifier for the target domain. However, most prior methods have not simultaneously reduced the difference in both the marginal distribution and conditional distribution between domains. In this paper,(More)
Nearest neighbor search methods based on hashing have attracted considerable attention for effective and efficient large-scale similarity search in computer vision and information retrieval community. In this paper, we study the problems of learning hash functions in the context of multimodal data for cross-view similarity search. We put forward a novel(More)
Visual domain adaptation, which learns an accurate classifier for a new domain using labeled images from an old domain, has shown promising value in computer vision yet still been a challenging problem. Most prior works have explored two learning strategies independently for domain adaptation: feature matching and instance reweighting. In this paper, we(More)
Similarity search methods based on hashing for effective and efficient cross-modal retrieval on large-scale multimedia databases with massive text and images have attracted considerable attention. The core problem of cross-modal hashing is how to effectively construct correlation between multi-modal representations which are heterogeneous intrinsically in(More)
With benefits of low storage costs and high query speeds, hashing methods are widely researched for efficiently retrieving large-scale data, which commonly contains multiple views, e.g. a news report with images, videos and texts. In this paper, we study the problem of cross-view retrieval and propose an effective Semantics-Preserving Hashing method, termed(More)
Domain transfer learning, which learns a target classifier using labeled data from a different distribution, has shown promising value in knowledge discovery yet still been a challenging problem. Most previous works designed adaptive classifiers by exploring two learning strategies independently: distribution adaptation and label propagation. In this paper,(More)
Though widely utilized for facilitating image management, user-provided image tags are usually incomplete and insufficient to describe the whole semantic content of corresponding images, resulting in performance degradations in tag-dependent applications and thus necessitating effective tag completion methods. In this paper, we propose a novel scheme(More)
Transfer learning is established as an effective technology to leverage rich labeled data from some source domain to build an accurate classifier for the target domain. The basic assumption is that the input domains may share certain knowledge structure, which can be encoded into common latent factors and extracted by preserving important property of(More)
Sparse coding learns a set of basis functions such that each input signal can be well approximated by a linear combination of just a few of the bases. It has attracted increasing interest due to its state-of-the-art performance in BoW based image representation. However, when labeled and unlabeled images are sampled from different distributions, they may be(More)
To tackle a multi-label classification problem with many classes, recently label space dimension reduction (LSDR) is proposed. It encodes the original label space to a low-dimensional latent space and uses a decoding process for recovery. In this paper, we propose a novel method termed FaIE to perform LSDR via Feature-aware Implicit label space Encoding.(More)