Learn More
In this paper we focus on the implications of implementing generic algorithms on graphics hardware. As an example, we ported the dimensionality reduction algorithm FastMap to fragment programs and thus accelerated it by orders of magnitude, allowing for interactive tweaking and evaluating of the algorithm parameters for datasets of several hundred thousand(More)
We present a novel visualization method for monoand dipolar molecular simulations from thermodynamics that takes advantage of modern graphics hardware to interactively render specifically tailored glyphs. Our approach allows domain experts to visualize the results of molecular dynamics simulations with a higher number of particles than before and(More)
A current research topic in molecular thermodynamics is the condensation of vapor to liquid and the investigation of this process at the molecular level. Condensation is found in many physical phenomena, e.g. the formation of atmospheric clouds or the processes inside steam turbines, where a detailed knowledge of the dynamics of condensation processes will(More)
Visualization applications nowadays not only face increasingly larger datasets, but have to solve increasingly complex research questions. They often require more than a single algorithm and consequently a software solution will exceed the possibilities of simple research prototypes. Well-established systems intended for such complex visual analysis(More)
In this paper a new method for the non-invasive adaptation of user interfaces is presented. The main idea is not to implement the user interface toolkit as an API, but instead as an object file that redefines the functionality of the API of an already existing toolkit in a generic way based on a so-called preloading technique. Compared to common approaches,(More)
Molecular dynamics simulations are a principal tool for studying molecular systems. Such simulations are used to investigate molecular structure, dynamics, and thermodynamical properties, as well as a replacement for, or complement to, costly and dangerous experiments. With the increasing availability of computational power the resulting data sets are(More)
Particle-based simulations are a popular tool for researchers in various sciences. In combination with the availability of ever larger COTS clusters and the consequently increasing number of simulated particles the resulting datasets pose a challenge for real-time visualization. Additionally the semantic density of the particles exceeds the possibilities of(More)