Guido Kanschat

Learn More
An overview of the software design and data abstraction decisions chosen for deal.II, a general purpose finite element library written in C++, is given. The library uses advanced object-oriented and data encapsulation techniques to break finite element implementations into smaller blocks that can be arranged to fit users requirements. Through this(More)
A variable V-cycle preconditioner for an interior penalty finite element discretization for elliptic problems is presented. An analysis under a mild regularity assumption shows that the preconditioner is uniform. The interior penalty method is then combined with a discontinuous Galerkin scheme to arrive at a discretization scheme for an advection-diffusion(More)
In this paper, we present a super-convergence result for the Local Discontinuous Galerkin method for a model elliptic problem on Cartesian grids. We identify a special numerical ux for which the L 2-norm of the gradient and the L 2-norm of the potential are of order k + 1=2 and k + 1, respectively, when tensor product polynomials of degree at most k are(More)
In this paper a new local discontinuous Galerkin method for the incompressible stationary Navier-Stokes equations is proposed and analyzed. Four important features render this method unique: its stability, its local conservativity, its high-order accuracy, and the exact satisfaction of the incompressibility constraint. Although the method uses completely(More)
We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element postprocessing(More)
We present a class of discontinuous Galerkin methods for the incompressible Navier-Stokes equations yielding exactly divergence-free solutions. Exact incompressibility is achieved by using divergence-conforming velocity spaces for the approximation of the velocities. The resulting methods are locally conservative, energy-stable, and optimally convergent. We(More)
We revisit some results from M. L. Adams [Nucl. Sci. Engrg., 137 (2001), pp. 298– 333]. Using functional analytic tools we prove that a necessary and sufficient condition for the standard upwind discontinuous Galerkin approximation to converge to the correct limit solution in the diffusive regime is that the approximation space contains a linear space of(More)