Guido Filacchioni

Learn More
In the present study, some selected, previously reported 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates (TQXs) and 3-hydroxy-quinazoline-2,4-diones (QZs), were evaluated for their affinity at the (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)-propionic acid (AMPA) receptor in the [(3)H]-6-cyano-7-nitroquinoxaline-2,3-dione ([(3)H]-CNQX)(More)
Quantitative structure-activity relationships (QSARs) represent a very well consolidated computational approach to correlate structural or property descriptors of chemical compounds with their chemical or biological activities. We have recently reported that autocorrelation Molecular Electrostatic Potential (autoMEP) vectors in combination to Partial(More)
The synthesis and Gly/NMDA, AMPA and KA receptor binding activities of some 3-hydroxy-quinazoline-2,4-dione derivatives are reported. The binding data, together with functional antagonism studies, showed that the 3-hydroxy-quinazoline-2,4-dione moiety can be considered a useful scaffold to obtain selective Gly/NMDA and AMPA receptor antagonists. In fact,(More)
In recent papers (Catarzi, D.; et al. J. Med. Chem. 1999, 42, 2478-2484; 2000, 43, 3824-3826; 2001, 44, 3157-3165) we reported the synthesis of a set of 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates (TQXs) that were active at the Gly/NMDA and/or AMPA receptors. In the present work the synthesis and Gly/NMDA, AMPA, and KA receptor binding(More)
A series of 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates analogues of TQX-173 (1b), bearing different nitrogen-containing heterocycles at position-8, were synthesized as AMPA receptor antagonists. All the reported compounds were also biologically evaluated for their binding at glycine/NMDA and KA receptors to better assess their(More)
This paper reports the synthesis and AMPA, Gly/NMDA, and KA receptor binding affinities of a new set of 1,9-disubstituted-8-chloro-pyrazolo[1,5-c]quinazoline-2-carboxylates 2-34. Binding data show that, in general, compounds 2-34 bind to the AMPA receptor with good affinity and selectivity. In particular, the obtained results indicate that the contemporary(More)
Two novel antagonists of the glycine-NMDA receptor have been synthesized and tested for their ability to displace [3H]glycine from its specific binding site in rat brain cortical membranes. The 3-substituted pyrazino[1,2,3-de]quinoxalin-2,5,6-triones 1a-b contain all the essential pharmacophoric descriptors of a glycine receptor antagonist. A model is(More)
  • 1