Guibin Zheng

Learn More
This paper presents a robust approach to improve the performance of voice activity detector (VAD) in low signal-to-noise ratio (SNR) noisy environments. To this end, we first generate sparse representations by Bregman Iteration based sparse decomposition with a learned over-complete dictionary, and derive a kind of audio feature called sparse power spectrum(More)
The maximum a posteriori (MAP) criterion is broadly used in the statistical model-based voice activity detection (VAD) approaches. In the conventional MAP criterion, however, the inter-frame correlation of the voice activity is not taken into consideration. In this paper, we proposes a novel modified MAP criterion based on a two-state hidden Markov model(More)
Acoustic environment recognition has been widely used in many applications, and is a considerable difficult problem for the real-life and complex environment. This paper proposes a novel feature, named minimum statistics project coefficients (MSPC), and intents to solve this problem. The MSPC feature is extracted from the background sound which is more(More)