Guglielmo Lacorata

Learn More
We review and discuss some different techniques for describing local dispersion properties in fluids. A recent Lagrangian diagnostics, based on the Finite Scale Lyapunov Exponent (FSLE), is presented and compared to the Finite Time Lyapunov Exponent (FTLE), and to the Okubo-Weiss (OW) and Hua-Klein (HK) criteria. We show that the OW and HK are a limiting(More)
We analyze characteristics of drifter trajectories from the Adriatic Sea with recently introduced nonlinear dynamics techniques. We discuss how in quasienclosed basins, relative dispersion as function of time, a standard analysis tool in this context, may give a distorted picture of the dynamics. We further show that useful information may be obtained by(More)
In this paper we investigate mixing and transport in correspondence of a meandering jet. The large-scale flow field is a kinematically assigned streamfunction. Two basic mixing mechanisms are considered, first separately and then combined together: deterministic chaotic advection, induced by a time dependence of the flow, and turbulent diffusion, described(More)
We study the response of dynamical systems to finite amplitude perturbation. A generalized fluctuation-response relation is derived, which links the average relaxation toward equilibrium to the invariant measure of the system and points out the relevance of the amplitude of the initial perturbation. Numerical computations on systems with many characteristic(More)
Knowledge of the link between ocean hydrodynamics and distribution of small pelagic fish species is fundamental for the sustainable management of fishery resources. Both commercial and scientific communities are indeed seeking to provide services that could "connect the dots" among in situ and remote observations, numerical ocean modelling, and fisheries.(More)
In the framework of Monitoring by Ocean Drifters (MONDO) project, a set of Lagrangian drifters were released in proximity of the Brazil Current, the western branch of the subtropical gyre in the South Atlantic Ocean. The experimental strategy of deploying part of the buoys in clusters offers the opportunity to examine relative dispersion on a wide range of(More)
Distribution shifts are a common adaptive response of marine ectotherms to climate change but the pace of redistribution depends on species-specific traits that may promote or hamper expansion to northern habitats. Here we show that recently, the loggerhead turtle (Caretta caretta) has begun to nest steadily beyond the northern edge of the species' range in(More)
Relative dispersion in a neutrally stratified planetary boundary layer (PBL) is investigated by means of Large-Eddy Simulations (LES). Despite the small extension of the inertial range of scales in the simulated PBL, our Lagrangian statistics turns out to be compatible with the Richardson t3 law for the average of square particle separation. This emerges(More)
We show how a general formulation of the Fluctuation-Response Relation is able to describe in detail the connection between response properties to external perturbations and spontaneous fluctuations in systems with fast and slow variables. The method is tested by using the 360variable Lorenz-96 model, where slow and fast variables are coupled to one another(More)
We address the problem of measuring time properties of response functions (Green functions) in Gaussian models (Orszag-McLaughin) and strongly non-Gaussian models (shell models for turbulence). We introduce the concept of halving-time statistics to have a statistically stable tool to quantify the time decay of response functions and generalized response(More)