Gudrun Reiterer

Learn More
Dietary zinc has potent antioxidant and anti-inflammatory properties and is a critical component of peroxisome proliferator-activated receptor (PPAR) gene expression and regulation. To assess the protective mechanisms of PPARgamma in endothelial cell dysfunction and the role of zinc in the modulation of PPARgamma signaling, cultured porcine pulmonary artery(More)
We hypothesize that nutrition can modulate the toxicity of environmental pollutants and thus modulate health and disease outcome associated with chemical insult. There is now increasing evidence that exposure to persistent organic pollutants, such as PCBs, can contribute to the development of inflammatory diseases such as atherosclerosis. Activation,(More)
Consumption of plant phenolics, such as quercetin, may be associated with decreased risk of cardiovascular disease by stabilizing and protecting vascular endothelial cells against oxidative and proinflammatory insults. The present study focused on the effect of quercetin on linoleic acid-induced oxidative stress and the inflammatory pathways of nuclear(More)
Exposure to polychlorinated biphenyls (PCBs) can activate inflammatory responses in vascular endothelial cells. Activation of peroxisome proliferator-activated receptors (PPARs) by nutrients or synthetic agonists has been shown to block pro-inflammatory responses both in vitro and in vivo. Here we demonstrate that activation of PPARα by synthetic agonists(More)
Low zinc concentration can be associated with an increased risk of cardiovascular diseases. In the current study, we hypothesize that zinc deficiency can increase and zinc supplementation can decrease proatherosclerotic events in LDL receptor knock-out (LDL-R-/-) mice fed a moderate-fat diet. Mice were fed either a zinc-deficient (0 micromol Zn/g), a(More)
Zinc is an essential structural component of various proteins and is crucial for the integrity of the vascular endothelium. The present study focused on the effect of zinc deficiency on the anti-inflammatory properties of peroxisome proliferator activated receptor (PPAR) alpha and gamma agonists. Porcine pulmonary-arterial endothelial cells were deprived(More)
There is evidence that dietary fat can modify the cytotoxicity of polychlorinated biphenyls (PCBs) and that coplanar PCBs can induce inflammatory processes critical in the pathology of vascular diseases. To test the hypothesis that the interaction of PCBs with dietary fat is dependent on the type of fat, low-density lipoprotein receptor-deficient(More)
Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs) can cause endothelial cell (EC) activation by inducing pro-inflammatory signaling pathways. Our previous studies indicated that linoleic acid (LA, 18:2), a major omega-6 unsaturated fatty acid in the American diet, can potentiate PCB77-mediated inflammatory responses in EC.(More)
We hypothesize that nutrition can modulate the toxicity of environmental pollutants and thus modulate health and disease outcome associated with chemical insult. There is now increasing evidence that exposure to persistent organic pollutants, such as PCBs, can contribute to the development of inflammatory diseases such as atherosclerosis. Activation,(More)
  • 1