Guanrong Huang

Learn More
Growth factor signaling by receptor tyrosine kinases regulates several cell fates, such as proliferation and differentiation. Sef was genetically identified as a negative regulator of fibroblast growth factor (FGF) signaling. Using bioinformatic methods and rapid amplification of cDNA ends-PCR, we isolated both the mouse and the human Sef genes, which(More)
Current epidemics of diabetes mellitus is largely caused by wide spread obesity. The best-established connection between obesity and insulin resistance is the elevated and/or dysregulated levels of circulating free fatty acids that cause and aggravate insulin resistance, type 2 diabetes, cardiovascular disease and other hazardous metabolic conditions. Here,(More)
Phosphoinositides now emerge as important regulators of membrane traffic. In particular, phosphatidylinositol 4-phosphate may serve as a precursor for polyphosphorylated derivatives of phosphatidylinositol and, also, may regulate vesicular traffic by recruiting specific proteins to the membrane. Early results have demonstrated the presence of(More)
Glut4 storage vesicles (GSVs) represent translocation-competent vesicular carriers in fat and skeletal muscle cells that deliver Glut4 to the plasma membrane in response to insulin stimulation. GSVs include three major cargo proteins: Glut4, insulin-responsive aminopeptidase (IRAP), and sortilin. Previous work has suggested that the lumenal interaction(More)
Insulin-dependent translocation of glucose transporter 4 (Glut4) to the plasma membrane of fat and skeletal muscle cells plays the key role in postprandial clearance of blood glucose. Glut4 represents the major cell-specific component of the insulin-responsive vesicles (IRVs). It is not clear, however, whether the presence of Glut4 in the IRVs is essential(More)
To control gene expression by directly responding to hormone concentrations, both animal and plant cells have exploited comparable mechanisms to sense small-molecule hormones in nucleus. Whether nuclear entry of these hormones is actively transported or passively diffused, as conventionally postulated, through the nuclear pore complex, remains enigmatic.(More)
Sef is a transmembrane protein inhibiting FGF signaling. To determine the correlation of Sef with human diseases, Sef expression patterns were observed in cell lines and human cancer tissues. Western blot using anti-hSef antibodies showed that hSef, when expressed in Cos7 cells gave a molecular mass of 100 KD as compared with 80 KD in an in vitro(More)
  • 1