Learn More
UNLABELLED The introduction of an ammonia modified graphene oxide (GO:NH3) layer into perovskite-based solar cells (PSCs) with a structure of indium-tin oxide (ITO)/poly(3,4-ethylene-dioxythiophene):poly(4-styrenesulfonate) ( PEDOT PSS)-GO: NH3/CH3NH3PbI3-xClx/phenyl C61-butyric acid methyl ester (PCBM)/(solution Bphen) sBphen/Ag improves their(More)
The modulation of the distribution of magnetic ions embedded in the host is crucial for the functionality of dilute magnetic semiconductors. Through an element-specific structural characterization, we observe the formation and enhancement of an unrevealed Co-doped ZnO phase and consequently magnetic properties from paramagnetism to ferromagnetism are(More)
Using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) as hole conductor, a series of inverted planar CH3NH3PbI3-xClx perovskite solar cells (PSCs) were fabricated based on perovskite annealed by an improved time-temperature dependent (TTD) procedure in a flowing nitrogen atmosphere for different time. Only after an optimum annealing time,(More)
Protons can penetrate through single-layer graphene, but thicker graphene layers (more than 2 layers), which possess more compact electron density, are thought to be unfavourable for penetration by protons at room temperature and elevated temperatures. In this work, we developed an in-situ sub-second time-resolved grazing-incidence X-ray diffraction(More)
  • 1