Guangyuan Wang

Learn More
Lysine acetylation is a major post-translational modification that plays an important regulatory role in almost every aspects in both eukaryotes and prokaryotes. Bacillus amyloliquefaciens, a Gram-positive bacterium, is very effective for the control of plant pathogens. However, very little is known about the function of lysine acetylation in this organism.(More)
RNase II, a 3' to 5' processive exoribonuclease, is the major hydrolytic enzyme in Escherichia coli accounting for ∼90% of the total activity. Despite its importance, little is actually known about regulation of this enzyme. We show here that one residue, Lys501, is acetylated in RNase II. This modification, reversibly controlled by the acetyltransferase(More)
Protein lysine succinylation is an important post-translational modification and plays a critical regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Common wheat is one of the major global cereal crops. However, to date, little is known about the functions of lysine succinylation in this plant. Here, we performed(More)
Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6%(More)
Lysine acetylation of proteins, a major post-translational modification, plays a critical regulatory role in almost every aspects in both eukaryotes and prokaryotes. Yarrowia lipolytica, an oleaginous yeast, is considered as a model for bio-oil production due to its ability to accumulate a large amount of lipids. However, the function of lysine acetylation(More)
Yarrowia lipolytica is considered as a promising microbial cell factory for bio-oil production due to its ability to accumulate a large amount of lipid. However, the regulation of lipid metabolism in this oleaginous yeast is elusive. In this study, the MHY1 gene was disrupted, and 43.1% (w/w) intracellular oil based on cell dry weight was obtained from the(More)
  • 1