Guangyu Liu

Learn More
The epitaxy optimization studies of high-quality n-type AlInN alloys with different indium contents grown on two types of substrates by metalorganic vapor phase epitaxy (MOVPE) were carried out. The effect of growth pressure and V/III molar ratio on growth rate, indium content, and surface morphology of these MOVPE-grown AlInN thin films were examined. The(More)
Optimization of internal quantum efficiency (IQE) for InGaN quantum wells (QWs) light-emitting diodes (LEDs) is investigated. Staggered InGaN QWs with large electron-hole wavefunction overlap and improved radiative recombination rate are investigated for nitride LEDs application. The effect of interface abruptness in staggered InGaN QWs on radiative(More)
Current injection efficiency and its impact on efficiency-droop in InGaN single quantum well (QW) based light-emitting diodes (LEDs) are investigated. The analysis is based on current continuity relation for drift and diffusion carrier transport across the QW-barrier system. A self-consistent 6-band k p method is used to calculate the band structure for(More)
Related Articles The effect of In-flush on the optical anisotropy of InAs/GaAs quantum dots J. Appl. Phys. 111, 033510 (2012) Deep traps and enhanced photoluminescence efficiency in nonpolar a-GaN/InGaN quantum well structures J. Appl. Phys. 111, 033103 (2012) Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy Appl. Phys. Lett.(More)
Highly uniform InGaN-based quantum dots (QDs) grown on a nanopatterned dielectric layer defined by self-assembled diblock copolymer were performed by metal-organic chemical vapor deposition. The cylindrical-shaped nanopatterns were created on SiNx layers deposited on a GaN template, which provided the nanopatterning for the epitaxy of ultra-high density QD(More)
We have investigated the characteristics of THz generation including the dependence of the output power and polarization on the incident angle and pump polarization from two series of InN films grown by plasma-assisted molecular beam epitaxy (PAMBE) and metal organic chemical vapor deposition (MOCVD), respectively. Following the analyses of our results, we(More)
Staggered InGaN quantum wells (QWs) are investigated both numerically and experimentally as improved active region for light-emitting diodes (LEDs) emitting at 520–525 nm. Based on a self-consistent six-band k.p method, band structures of both two-layer staggered InxGa12xN/InyGa12yN QW and three-layer staggered InyGa12yN/InxGa12xN/InyGa12yN QW structures(More)
We have investigated terahertz (THz) generation from InGaN/GaN multiple quantum wells (QWs). For the laser pump power of 400 mW at 391 nm, the highest THz output power is nearly 1 μW. Assuming that the output power quadratically scales up with the interaction length, such an output power corresponds to a normalized output power of 1.7 nW/nm . The normalized(More)