Learn More
Expression of the brain-derived neurotrophic factor (BDNF) is under tight regulation to accommodate its intricate roles in controlling brain function. Transcription of BDNF initiates from multiple promoters in response to distinct stimulation cues. However, regardless which promoter is used, all BDNF transcripts are processed at two alternative(More)
Complex regulation of brain-derived neurotrophic factor (BDNF) governs its intricate functions in brain development and neuronal plasticity. Besides tight transcriptional control from multiple distinct promoters, alternative 3'end processing of the BDNF transcripts generates either a long or a short 3'untranslated region (3'UTR). Previous reports indicate(More)
Face recognition with occlusion is a challenging problem. Recently, the modular representation based method, i.e., modular linear regression based classification (MLRC) was proposed to deal with this problem. However, MLRC just simply combines the individual decision of each block within an image (based on the min rule) to make final decision. Therefore,(More)
Cyclin-dependent kinase 5 (Cdk5) plays key roles in normal brain development and function. Dysregulation of Cdk5 may cause neurodegeneration and cognitive impairment. Besides the well demonstrated role of Cdk5 in neurons, emerging evidence suggests the functional requirement of Cdk5 in oligodendroglia (OL) and CNS myelin development. However, whether(More)
Oligodendrocyte (OL) differentiation and myelin development are complex events regulated by numerous signal transduction factors. Here, we report that phosphoinositide-3 kinase enhancer L (PIKE-L) is required for OL development and myelination. PIKE-L expression is up-regulated when oligodendrocyte progenitor cells commit to differentiation. Conversely,(More)
The selective RNA-binding protein Quaking I (QKI) has previously been implicated in RNA localization and stabilization, alternative splicing, cell proliferation, and differentiation. The spontaneously-occurring quakingviable (qkv) mutant mouse exhibits a sharply attenuated level of QKI in myelin-producing cells, including oligodendrocytes (OL) because of(More)
Two distinct protein cofactors, p35 and p39, independently activate Cyclin-dependent kinase 5 (Cdk5), which plays diverse roles in normal brain function and the pathogenesis of many neurological diseases. The initial discovery that loss of p35 impairs neuronal migration in the embryonic brain prompted intensive research exploring the function of(More)
  • 1