Guangjun Fan

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Under the assumption that one has a reference device identical or similar to the target device, and thus be well capable of characterizing power leakages of the target device, Template Attacks are widely accepted to be the most powerful side-channel attacks. However, the question of whether Template Attacks are really optimal in terms of the leakage(More)
In real world, in order to transform an abstract and generic cryptographic scheme into actual physical implementation, one usually undergoes two processes: mathematical realization at algorithmic level and physical realization at implementation level. In the former process, the abstract and generic cryptographic scheme is transformed into an exact and(More)
Template attacks are widely accepted to be the most powerful side-channel attacks from an information theoretic point of view. For template attacks to be practical, one needs to choose some special samples as the interesting points in actual power traces. Up to now, many different approaches were introduced for choosing interesting points for template(More)
Template attacks are widely accepted to be the most powerful side-channel attacks from an information theoretic point of view. For template attacks, many papers suggested a guideline for choosing interesting points which is still not proven. The guideline is that one should only choose one point as the interesting point per clock cycle. Up to now, many(More)
Template attacks are widely accepted as the strongest side-channel attacks from the information theoretic point of view, and they can be used as a very powerful tool to evaluate the physical security of cryptographic devices. Template attacks consist of two stages, the profiling stage and the extraction stage. In the profiling stage, the attacker is assumed(More)
In traditional cryptography, the standard way of examining the security of a scheme is to analyze it in a black-box manner, capturing no side channel attacks which exploit various forms of unintended information leakages and do threaten the practical security of the scheme. One way to protect against such attacks aforementioned is to extend the traditional(More)
Leakage resilient cryptography aims to address the issue of inadvertent and unexpected information leakages from physical cryptographic implementations. At Asiacrypt 2010, E.Kiltz et al. [1] presented a multiplicatively blinded version of ElGamal public-key encryption scheme, which is proved to be leakage resilient in the generic group model against roughly(More)
Template Attack is widely accepted to be one of the most powerful side-channel attacks, because it is usually assumed that one has a full knowledge of targeted crypto devices and thus be well capable of characterizing the side-channel leakages. However, the question of whether Template Attack is really optimal in terms of leakage exploitation rate is still(More)
K. Yoneyama et al. introduces the Leaky Random Oracle Model at ProvSec2008, which only considers the leakage of the hash list of a hash function used by a cryptosystem due to various attacks caused by implementation or sloppy usages. However, an important fact is that such attacks not only leak the hash list of a hash function, but also leak other secret(More)
Yoneyama et al. introduced Leaky Random Oracle Model (LROM for short) at ProvSec2008 in order to discuss security (or insecurity) of cryptographic schemes which use hash functions as building blocks when leakages from pairs of input and output of hash functions occur. This kind of leakages occurs due to various attacks caused by sloppy usage or(More)
  • 1