Learn More
In vivo niche plays an important role in determining the fate of exogenously implanted stem cells. Due to the lack of a proper chondrogenic niche, stable ectopic chondrogenesis of mesenchymal stem cells (MSCs) in subcutaneous environments remains a great challenge. The clinical application of MSC-regenerated cartilage in repairing defects in subcutaneous(More)
Previous studies have demonstrated the beneficial effect of mechanical loading on in vitro tendon engineering. To understand the mechanism, human tenocytes and polyglycolic acid long fibers were used for in vitro tendon engineering in a bioreactor system for 12 weeks with and without dynamic loading. The engineered neo-tendons were subjected to proteomic(More)
Bone marrow-derived mesenchymal stem cells (BMSCs) are a widely researched adult stem cell population capable of differentiation into various lineages. Because many promising applications of tissue engineering require cell expansion following harvest and involve the treatment of diseases and conditions found in an aging population, the effect of donor age(More)
Tenocytes reside in relatively avascular tissue and are difficult to expand due to phenotype drift and functional loss. Thus low O2 tension culture was employed to enhance the expansion capability. The results demonstrated that low O2 tension (2% O2) culture could significantly enhance the expansion of newborn pig tenocytes with 275–473% greater cell yield(More)
In vivo niche is known to play important roles in terminal differentiation of implanted bone marrow stromal cells (BMSCs). This study explored the feasibility of repairing articular osteochondral defects using autologous BMSCs and biodegradable polymers. BMSCs from 18 hybrid pigs' marrows were either treated with dexamethasone (40 ng/mL) alone or(More)
The application of in vitro engineered cartilage has become a promising approach to repair cartilage defects. Nevertheless, the poor mechanical properties of in vitro engineered cartilage limit its potential for clinical applications. Studies have shown that the extracellular matrix (ECM) components are strongly correlated with the mechanical strength of(More)
Due to the lack of appropriate scaffolds, the in vitro engineering of cartilage tissue with a sophisticated structure, such as a human ear, remains a great challenge. Although polyglycolic acid (PGA) has become one of the most successful scaffolds for cartilage regeneration, how to overcome its limitations in achieving desirable mechanical strength and(More)
Previously, we had addressed the issues of shape control/maintenance of in vitro engineered human-ear-shaped cartilage. Thus, lack of applicable cell source had become a major concern that blocks clinical translation of this technology. Autologous microtia chondrocytes (MCs) and bone marrow stromal cells (BMSCs) were both promising chondrogenic cells that(More)
Tissue engineering is considered as a promising approach for the regeneration of biological joint theoretically and thus provides a potential treatment option for advanced osteoarthritis. However, no significant progresses so far have been made in regenerating biological joint. In this study, a biphasic scaffold, which was consisted of polylactic(More)
BACKGROUND Ear defects caused by traumatic injury, tumor ablation, and congenital deficiency are still challenging problems for the plastic and reconstructive surgeon. The authors developed a scaffold-free, ear-shaped cartilage by tailoring a multilayered chondrocyte membrane on an ear-shaped titanium alloy model and investigated the possibility of(More)