Guangbin Ji

  • Citations Per Year
Learn More
Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and(More)
The photocatalytic performance of sodium pentachlorophenate (PCP-Na) over NaBiO(3) under visible light irradiation was first investigated systematically. After 1h of photocatalytic reaction, the degradation rate of PCP-Na could reach to 90.5% in appropriate conditions. OH is the dominant photooxidant rather than O(2)(-) based on the experiment results and(More)
This study reported, for the first time systematically, photodegradation of Rhodamine B (RhB) in aqueous solution over BiOCl and BiOBr semiconductors. Under visible light irradiation (λ>400 nm, λ>420 nm and λ=550±15 nm), RhB adsorbed on the surface of BiOCl and BiOBr was photosensitized and decomposed effectively over unexcited BiOCl and BiOBr. The(More)
The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample(More)
The photocatalytic decomposition of 4-t-octylphenol (4-t-OP) by NaBiO(3) photocatalyst and the catalyst stability in aqueous solution were investigated systematically for the first time. The results showed that some parameters such as catalyst dosage, initial 4-t-OP concentration and pH value of the solution had great effects on the photocatalytic activity.(More)
Design of an interface to arouse interface polarization is an efficient route to attenuate high-frequency electromagnetic waves. The attenuation intensity is highly related to the contact area. To achieve stronger interface polarization, growing metal oxide granular film on graphene with a larger surface area seems to be an efficient strategy due to the(More)
A novel yolk-shell structure of cobalt nanoparticle embedded nanoporous carbon@carbonyl iron (Co/NPC@Void@CI) was synthesized via metal organic chemical vapor deposition (MOCVD) and subsequent calcination treatment. The in situ generation of void layer, which originated from the shrink of a Co-based zeolitic imidazolate framework (ZIF-67) during(More)
In the current study, monocrystalline silicon nanowire arrays (SiNWs) were prepared through a metal-assisted chemical etching method of silicon wafers in an etching solution composed of HF and H2O2. Photoelectric properties of the monocrystalline SiNWs are improved greatly with the formation of the nanostructure on the silicon wafers. By controlling the(More)
Mesoporous silica nanofibers were synthesized within the pores of the anodic aluminum oxide template using a simple sol-gel method. Transmission electron microscopy investigation indicated that the concentration of the structure-directing agent (EO20PO70EO20) had a significant impact on the mesostructure of mesoporous silica nanofibers. Samples with(More)