Learn More
Long-term GABA(A) receptor alterations occur in hippocampal dentate granule neurons of rats that develop epilepsy after status epilepticus in adulthood. Hippocampal GABA(A) receptor expression undergoes marked reorganization during the postnatal period, however, and the effects of neonatal status epilepticus on subsequent GABA(A) receptor development are(More)
IL-12 has long been considered important in the pathogenesis of multiple sclerosis. However, evidence from recent studies strongly supports the critical role of IL-12-related proinflammatory cytokine IL-23, but not IL-12, in the development of experimental autoimmune encephalomyelitis (EAE), an animal model of this disease. The role of IL-23 in the CNS(More)
Recent findings have shown that IL-12, a key inducer of Th1 cell development, is not required in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) as severe CNS inflammatory demyelination can develop in the absence of IL-12 or IL-12 responsiveness. These data raised the possibility of an immunomodulatory action of IL-12 in this disease(More)
Diazepam (DZ) and phenobarbital (PH) are commonly used to treat early-life seizures and act on GABAA receptors (GABAR). The developing GABAergic system is highly plastic, and the long-term effects of postnatal treatment with these drugs on the GABAergic system has not been extensively examined. In the present study, we investigated the effects of prolonged(More)
Demyelination is a pathological hallmark of multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS) that affects mainly young people in western countries. Recent studies have shown that remyelination can be accomplished by supplying demyelinated regions with myelinogenic cells or neural stem cells via transplantation. The(More)
The suppressive effect of neural stem cells (NSCs) on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), has been reported. However, the migration of NSCs to inflammatory sites was relatively slow as was the onset of rather limited clinical benefit. Lack of, or low expression of particular chemokine receptors on(More)
MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in(More)
IL-17, a Th17 cell-derived proinflammatory molecule, has been found to play an important role in the pathogenesis of autoimmune diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). While IL-17 receptor (IL-17R) is expressed in many immune-related cells, microglia, and astrocytes, it is not known(More)
The therapeutic potential of adult neural stem cells (aNSCs) has been shown in EAE, an animal model of MS, administered by either i.c.v. or i.v. injection. However, i.c.v. is an invasive approach, while the i.v. route of aNSCs is associated with a non-specific immune suppression in the periphery. Here we demonstrate that intranasal (i.n.) delivery of(More)
Parkinson’s disease (PD) is a chronic neurodegenerative disease of the central nervous system (CNS), characterized by a loss of dopaminergic neurons, which is thought to be caused by both genetic and environmental factors. Recent findings suggest that neuroinflammation may be a pathogenic factor in the onset and progression of sporadic PD. Here we explore(More)