Vinod Sahgal24
Vlodek Siemionow22
Jing Z Liu20
Yin Fang12
24Vinod Sahgal
22Vlodek Siemionow
20Jing Z Liu
12Yin Fang
Learn More
A dynamical model is presented as a framework for muscle activation, fatigue, and recovery. By describing the effects of muscle fatigue and recovery in terms of two phenomenological parameters (F, R), we develop a set of dynamical equations to describe the behavior of muscles as a group of motor units activated by voluntary effort. This model provides a(More)
Current semiautomated magnetic resonance (MR)-based brain segmentation and volume measurement methods are complex and not sufficiently accurate for certain applications. We have developed a simpler, more accurate automated algorithm for whole-brain segmentation and volume measurement in T(1)-weighted, three-dimensional MR images. This histogram-based brain(More)
Although degeneration of brain white matter (WM) in aging is a well-recognized problem, its quantification has mainly relied on volumetric measurements, which lack detail in describing the degenerative adaptation. In this study, WM structural complexity was evaluated in healthy old and young adults by analyzing the three-dimensional fractal dimension (FD)(More)
During prolonged submaximal muscle contractions, electromyographic (EMG) signals typically increase as a result of increasing motor unit activities to compensate for fatigue-induced force loss in the muscle. It is thought that cortical signals driving the muscle to higher activation levels also increases, but this has never been experimentally demonstrated.(More)
Muscle fatigue has been known to differentially affect the activation level of the primary motor cortices (MIs) of the brain's two hemispheres. Whether this fatigue-related decoupling influence on the motor cortical signals extends beyond the motor action to the after-fatigue-task resting state is unknown. This question can be addressed by analyzing(More)
Fractal dimension has been used to quantify the structures of a wide range of objects in biology and medicine. We measured fractal dimension of human cerebellum (CB) in magnetic resonance images of 24 healthy young subjects (12 men and 12 women). CB images were resampled to a series of image sets with different 3D resolutions. At each resolution, the(More)
Eccentric muscle contractions generate greater force at a lower level of activation and subject muscles to more severe damage than do concentric actions. A recent investigation has revealed that electroencephalogram (EEG)-derived movement-related cortical potential (MRCP) is greater and occurs earlier for controlling human eccentric than concentric(More)
Fractal dimension (FD) is increasingly used to quantify complexity of brain structures. Previous research that analyzed FD of human brain mainly focused on two-dimensional measurements. In this study, we developed a three-dimensional (3D) box-counting method to measure FD of human brain white matter (WM) interior structure, WM surface and WM general(More)
The purposes of this project were to determine mental training-induced strength gains (without performing physical exercises) in the little finger abductor as well as in the elbow flexor muscles, which are frequently used during daily living, and to quantify cortical signals that mediate maximal voluntary contractions (MVCs) of the two muscle groups. Thirty(More)
Little is known about the association between brain white matter (WM) structure and motor function in humans. This study investigated complexity of brain WM interior shape as determined by magnetic resonance imaging (MRI) and its relationship with upper-extremity (UE) motor function in patients post stroke. We hypothesized that (1) the WM complexity would(More)