Learn More
The relationship between functional MRI (fMRI)-measured brain signal and muscle force and or electromyogram (EMG) is critical in interpreting fMRI data and understanding the control mechanisms of voluntary motor actions. We designed a system that could record joint force and surface EMG online with fMRI data. High-quality force and EMG data were obtained(More)
The increase in motor unit force that occurs with aging has been hypothesized to cause a decline in the ability to maintain a constant submaximal force. To test this hypothesis, young and elderly subjects performed a 12-wk strength-training program that was intended to increase motor unit force. The training program caused similar increases (%initial) in(More)
During prolonged submaximal muscle contractions, electromyographic (EMG) signals typically increase as a result of increasing motor unit activities to compensate for fatigue-induced force loss in the muscle. It is thought that cortical signals driving the muscle to higher activation levels also increases, but this has never been experimentally demonstrated.(More)
The purposes of this project were to determine mental training-induced strength gains (without performing physical exercises) in the little finger abductor as well as in the elbow flexor muscles, which are frequently used during daily living, and to quantify cortical signals that mediate maximal voluntary contractions (MVCs) of the two muscle groups. Thirty(More)
Despite abundant evidence that different nervous system control strategies may exist for human concentric and eccentric muscle contractions, no data are available to indicate that the brain signal differs for eccentric versus concentric muscle actions. The purpose of this study was to evaluate electroencephalography (EEG)-derived movement-related cortical(More)
OBJECTIVES The purpose of this study was to quantify age-induced changes in handgrip and finger-pinch strength, ability to maintain a steady submaximal finger pinch force and pinch posture, speed in relocating small objects with finger grip, and ability to discriminate two identical mechanical stimuli applied to the finger tip. DESIGN A cross-sectional(More)
Current semiautomated magnetic resonance (MR)-based brain segmentation and volume measurement methods are complex and not sufficiently accurate for certain applications. We have developed a simpler, more accurate automated algorithm for whole-brain segmentation and volume measurement in T(1)-weighted, three-dimensional MR images. This histogram-based brain(More)
Fractal dimension has been used to quantify the structures of a wide range of objects in biology and medicine. We measured fractal dimension of human cerebellum (CB) in magnetic resonance images of 24 healthy young subjects (12 men and 12 women). CB images were resampled to a series of image sets with different 3D resolutions. At each resolution, the(More)
Muscle fatigue has been known to differentially affect the activation level of the primary motor cortices (MIs) of the brain's two hemispheres. Whether this fatigue-related decoupling influence on the motor cortical signals extends beyond the motor action to the after-fatigue-task resting state is unknown. This question can be addressed by analyzing(More)
Although degeneration of brain white matter (WM) in aging is a well-recognized problem, its quantification has mainly relied on volumetric measurements, which lack detail in describing the degenerative adaptation. In this study, WM structural complexity was evaluated in healthy old and young adults by analyzing the three-dimensional fractal dimension (FD)(More)