Learn More
Zinc is an essential trace element that is involved in diverse metabolic and signaling pathways. Zinc deficiency is associated with retardation of bone growth. Previous in vitro studies have suggested a direct effect of zinc on both the proliferation and differentiation of osteoblast-like cells. However, the mechanisms for uptake of zinc into osteoblasts(More)
BACKGROUND Several classes of histone deacetylases (HDACs) are expressed in the spinal cord that is a critical structure of the nociceptive pathway. HDAC-regulated histone acetylation is an important component of chromatin remodeling leading to epigenetic regulation of gene transcription. To understand the role of histone acetylation in epigenetic(More)
Active regulation of gene expression in the nervous system plays an important role in the development and/or maintenance of inflammatory pain. MicroRNA (miRNA) negatively regulates gene expression via posttranscriptional or transcriptional inhibition of specific genes. To explore the possible involvement of miRNA in gene regulation during inflammatory pain,(More)
The silencer factor NRSF/REST has been reported to restrict expression to neurons of a variety of genes, including that encoding NMDA receptor subunit type 1 (NR1), by suppressing transcription in nonneuronal cells. However, we recently reported that in addition to the absence of NRSF/REST-binding activity, another neuron-specific mechanism is necessary for(More)
Recent studies indicate that persistent pain after tissue or nerve injury is accompanied by an enhanced net descending facilitatory drive that contributes to an amplification and spread of pain. Although 5-HT-containing neurons in the rostral ventromedial medulla (RVM) provide the major descending serotonergic projection to the spinal cord, it is not clear(More)
We have identified the presence of leupaxin (LPXN), which belongs to the paxillin extended family of focal adhesion-associated adaptor proteins, in prostate cancer cells. Previous studies have demonstrated that LPXN is a component of the podosomal signaling complex found in osteoclasts, where LPXN was found to associate with the protein tyrosine kinases(More)
To understand the genetic mechanism controlling the expression of the NMDA subtype of glutamate receptors during neuronal differentiation, we studied activation of the N-methyl-D-aspartate receptor subunit 1 (NR1) gene and the role of the repressor element-1 (RE1) element in NR1 promoter activation. Following neuronal differentiation of P19 embryonic(More)
The NR1 gene undergoes induction in neurogenesis mainly via promoter de-repression, and up-regulation during neuronal differentiation by undefined mechanism(s). Here, we show that in the distal region the NR1 promoter has an active NF-kappaB site sharing the consensus with the immunoglobulin (Ig)/human immunodeficiency virus NF-kappaB site. Mutation of this(More)
Zinc has been previously demonstrated to be a potent inhibitor of osteoclastogenesis and osteoclast function. The mechanisms for cellular uptake of zinc into osteoclasts have not been characterized. We have corroborated previous studies on the reduction of osteoclastogenesis in the presence of extracellular zinc. We demonstrate that osteoclasts express a(More)
Non-invasive, movement-based models were used to investigate muscle pain. In rats, the masseter muscle was rapidly stretched or electrically stimulated during forced lengthening to produce eccentric muscle contractions (EC). Both EC and stretching disrupted scattered myofibers and produced intramuscular plasma extravasation. Pro-inflammatory cytokines(More)