Learn More
Portable, embedded systems place ever-increasing demands on high-performance, low-power microprocessor design. Dynamic voltage and frequency scaling (DVFS) is a well-known technique to reduce energy in digital systems, but the effectiveness of DVFS is hampered by slow voltage transitions that occur on the order of tens of microseconds. In addition, the(More)
Dynamic voltage and frequency scaling (DVFS) is a commonly-used power-management scheme that dynamically adjusts power and performance to the time-varying needs of running programs. Unfortunately, conventional DVFS, relying on off-chip regulators, faces limitations in terms of temporal granularity and high costs when considered for future multi-core(More)
Hardware specialization, in the form of accelerators that provide custom datapath and control for specific algorithms and applications, promises impressive performance and energy advantages compared to traditional architectures. Current research in accelerator analysis relies on RTL-based synthesis flows to produce accurate timing, power, and area(More)
—This paper describes a backplane transceiver, which uses pulse amplitude modulated four-level (PAM-4) signaling and continuously adaptive transmit-based equalization to move 2.5-GBd/s symbols totalling 5 Gb/s across typical FR-4 backplanes for total distances of up to 50 inches through two sets of backplane connectors. The 17-mm 2 device is implemented in(More)
Process variations will greatly impact the stability, leakage power consumption, and performance of future microprocessors. These variations are especially detrimental to 6T SRAM (6-transistor static memory) structures and will become critical with continued technology scaling. In this paper, we propose new on-chip memory architectures based on novel 3T1D(More)
Recent efforts to address microprocessor power dissipation through aggressive supply voltage scaling and power management require that designers be increasingly cognizant of power supply variations. These variations, primarily due to fast changes in supply current, can be attributed to architectural gating events that reduce power dissipation. In order to(More)
Recent years have seen a burgeoning interest in embedded wireless sensor networks with applications ranging from habitat monitoring to medical applications. Wireless sensor networks have several important attributes that require special attention to device design. These include the need for inexpensive, long-lasting, highly reliable devices coupled with(More)
Process variations are poised to significantly degrade performance benefits sought by moving to the next nanoscale technology node. Parameter fluctuations in devices can introduce large variations in peak operation among chips, among cores on a single chip, and among microarchitectural blocks within one core. Hence, it will be difficult to only rely on(More)
With the increasing prevalence of warehouse-scale (WSC) and cloud computing, understanding the interactions of server applications with the underlying microarchitecture becomes ever more important in order to extract maximum performance out of server hardware. To aid such understanding, this paper presents a detailed microarchitectural analysis of live(More)
Piezoelectric actuators can achieve high efficiency and power density in very small geometries, which shows promise for microrobotic applications, such as flapping-wing robotic insects. From the perspective of power electronics, such actuators present two challenges: high operating voltages, ranging from tens to thousands of volts, and a low(More)