Learn More
In recent years, many new backtracking algorithms for solving constraint satisfaction problems have been proposed. The algorithms are usually evaluated by empirical testing. This method, however, has its limitations. Our paper adopts a different, purely theoretical approach, which is based on characterizations of the sets of search tree nodes visited by the(More)
Letter-to-phoneme conversion generally requires aligned training data of letters and phonemes. Typically, the alignments are limited to one-to-one alignments. We present a novel technique of training with many-to-many alignments. A letter chunking bigram prediction manages double letters and double phonemes automatically as opposed to preprocess-ing with(More)
With the ever-growing popularity of online media such as blogs and social networking sites, the Internet is a valuable source of information for product and service reviews. Attempting to classify a subset of these documents using polarity metrics can be a daunting task. After a survey of previous research on sentiment polarity, we propose a novel approach(More)
We present a discriminative structure-prediction model for the letter-to-phoneme task, a crucial step in text-to-speech processing. Our method encompasses three tasks that have been previously handled separately: input segmentation, phoneme prediction, and sequence modeling. The key idea is online discriminative training, which updates parameters according(More)
Applying the noisy channel model to search query spelling correction requires an error model and a language model. Typically, the error model relies on a weighted string edit distance measure. The weights can be learned from pairs of misspelled words and their corrections. This paper investigates using the Expectation Maximization algorithm to learn edit(More)
Phonetic string transduction problems, such as letter-to-phoneme conversion and name transliteration, have recently received much attention in the NLP community. In the past few years, two methods have come to dominate as solutions to supervised string trans-duction: generative joint n-gram models, and discriminative sequence models. Both approaches benefit(More)