Grzegorz Banaszak

Learn More
We consider the local to global principle for detecting linear dependence of points in groups of the Mordell-Weil type. As applications of our general setting we obtain corresponding statements for Mordell-Weil groups of non-CM elliptic curves and some higher dimensional abelian varieties defined over number fields, and also for odd dimensional K-groups of(More)
In this paper we investigate the image of the l-adic representation attached to the Tate module of an abelian variety over a number field with endomor-phism algebra of type I or II in the Albert classification. We compute the image explicitly and verify the classical conjectures of Mumford-Tate, Hodge, Lang and Tate, for a large family of abelian varieties(More)
We consider the support problem of Erdös in the context of l-adic representations of the absolute Galois group of a number field. Main applications of the results of the paper concern Galois cohomology of the Tate module of abelian varieties with real and complex multiplications, the algebraic K-theory groups of number fields and the integral homology of(More)