Grover A. Swartzlander

Learn More
We study spatially localized optical vortices created by self-trapping of partially incoherent light with a phase dislocation in a biased photorefractive crystal. In contrast to a decay of coherent self-trapped vortex beams due to the azimuthal modulational instability, the incoherent vortices are stabilized for large values of the spatial incoherence; this(More)
We have predicted and observed an optical analogue of aerodynamic lift, in which a cambered refractive object with differently shaped top and bottom surfaces experiences a transverse lift force when placed in a uniform stream of light. A semi-cylindrical rod is found to automatically torque into a stable angle of attack, and then exhibit uniform motion. We(More)
Optical vortices are singularities in phase fronts of optical beams. They are characterized by a dark core in the center and by a helical wave front. Owing to azimuthal components of wave vectors, an optical vortex carries orbital angular momentum. Previously, optical vortices were studied only in coherent beams with a well-defined phase. The object of this(More)
The nonlinear refractive-index (n(2)) spectrum of ZnSe near the band gap (lambda(gap) approximately 450 nm) at 77 K was measured for the first time to our knowledge by using self-bending of a pulsed laser beam. The maximum nonlinearity, n(2) approximately 1.9 x 10(-8) cm(2)/W, measured by us is anomalously large, which cannot be explained by conventional(More)
Continuous-wave self-deflection of an asymmetrical laser beam, with a deflection angle up to eight diffraction widths, and strong attenuation of the on-axis radiation were achieved in a short sodium-vapor cell. We determined that the nonlinear refractive index Deltan varied almost linearly with intensity I, Deltan approximately n(2)I, with n(2) ~ -10(-7)(More)
  • 1