Learn More
OBJECTIVE Recent reports suggest that hematopoietic stem cells (HSC) can transdifferentiate into cardiomyoctes and contribute to myocardial regeneration after injury. This concept has recently been challenged by studies in which bone-marrow (BM)-derived cells do not acquire a cardiac phenotype after direct injection into ischemic myocardium. METHODS In(More)
We investigated the effects of normobaric hypoxia on rat lungs and hypothesized that the hypoxic exposure would induce lung injury with pulmonary edema and inflammation ensued by development of fibrosis. Rats were exposed to 10% O(2) in nitrogen over 6-168h. We analyzed cardiovascular function and pulmonary changes, lung histology and mRNA expression of(More)
OBJECTIVE To test the hypothesis that IL-1beta and IL-6 play a pivotal role after myocardial infarction (MI) particularly in aged rats. METHODS Chronic MI was induced in young adult (3.5 months) and aged (18 months) female Sprague-Dawley rats by ligation of the left coronary artery. Sham-operated animals of corresponding age served as controls. Heart(More)
OBJECTIVE In this study the ability of unrestricted somatic stem cells (USSC) and mononuclear cord blood cells (MN-CBC) was tested to improve heart function and left ventricular (LV) remodeling after myocardial infarction (MI). METHODS The cells were delivered by i.v. or intramyocardial injections in rat models of MI by permanent coronary artery occlusion(More)
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal(More)
Myasthenia gravis (MG) is characterized by reduced muscle endurance and is often accompanied by respiratory complications. Improvement of respiratory function is therefore an important objective in MG therapy. A previous study demonstrated that respiratory muscle endurance training (RMET) over four weeks increased respiratory muscle endurance of MG patients(More)
GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a(More)
  • 1