Grigory V. Mechetin

  • Citations Per Year
Learn More
An abundant oxidative lesion, 8-oxo-7,8-dihydroguanine (8-oxoG), often directs the misincorporation of dAMP during replication. To prevent mutations, cells possess an enzymatic system for the removal of 8-oxoG. A key element of this system is 8-oxoguanine-DNA glycosylase (Fpg in bacteria, OGG1 in eukaryotes), which must excise 8-oxoG from 8-oxoG:C pairs but(More)
Uracil appears in DNA as a result of cytosine deamination and by incorporation from the dUTP pool. As potentially mutagenic and deleterious for cell regulation, uracil must be removed from DNA. The major pathway of its repair is initiated by uracil-DNA glycosylases (UNG), ubiquitously found enzymes that hydrolyze the N-glycosidic bond of deoxyuridine in(More)
To perform their functions, many DNA-dependent proteins have to quickly locate specific targets against the vast excess of nonspecific DNA. Although this problem was first formulated over 40 years ago, the mechanism of such search remains one of the unsolved fundamental problems in the field of protein-DNA interactions. Several complementary mechanisms have(More)
Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed(More)
Uracil-DNA glycosylase (Ung) can quickly locate uracil bases in an excess of undamaged DNA. DNA glycosylases may use diffusion along DNA to facilitate lesion search, resulting in processivity, the ability of glycosylases to excise closely spaced lesions without dissociating from DNA. We propose a new assay for correlated cleavage and analyze the(More)
Many proteins specific for rare targets in DNA, such as transcription factors, restriction endonucleases, and DNA repair enzymes, search for their targets by one-dimensional diffusion along DNA. One of these proteins is uracil-DNA glycosylase (Ung), which excises the uracil bases formed by rare events of cytosine deamination. We have studied the ability of(More)
Uracil-DNA glycosylase (Ung) is a DNA repair enzyme that excises uracil bases from DNA, where they appear through deamination of cytosine or incorporation from a cellular dUTP pool. DNA repair enzymes often use one-dimensional diffusion along DNA to accelerate target search; however, this mechanism remains poorly investigated mechanistically. We used(More)
94 DNA, the basic carrier of genetic information, is constantly exposed to damaging factors of different nature. Most of lesions are corrected by the DNA repair system, which includes a number of pathways, most important of which, judging by the number of lesions removed, is the base excision repair (BER) [1]. Today, the mechanisms of lesion search by(More)
  • 1