Learn More
Oxidative stress may contribute to many pathophysiologic changes that occur after traumatic brain injury. In the current study, contemporary methods of detecting oxidative stress were used in a rodent model of traumatic brain injury. The level of the stable product derived from peroxidation of arachidonyl residues in phospholipids, 8-epi-prostaglandin(More)
Recognition of injured mitochondria for degradation by macroautophagy is essential for cellular health, but the mechanisms remain poorly understood. Cardiolipin is an inner mitochondrial membrane phospholipid. We found that rotenone, staurosporine, 6-hydroxydopamine and other pro-mitophagy stimuli caused externalization of cardiolipin to the mitochondrial(More)
Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the(More)
Etoposide (VP-16) is extensively used to treat cancer, yet its efficacy is calamitously associated with an increased risk of secondary acute myelogenous leukemia. The mechanisms for the extremely high susceptibility of myeloid stem cells to the leukemogenic effects of etoposide have not been elucidated. We propose a mechanism to account for the(More)
Studies in experimental traumatic brain injury (TBI) suggest both deleterious and protective effects of inducible nitric oxide synthase (iNOS). Early after injury, iNOS may be detrimental via formation of peroxynitrite and iNOS inhibitors are protective. In contrast, we reported impaired long-term functional outcome after TBI in iNOS knockout (ko) versus(More)
Phosphatidylserine (PS) is predominantly confined to the inner leaflet of plasma membrane in cells, but it is externalized on the cell surface during apoptosis. This externalized PS is required for effective phagocytosis of apoptotic cells by macrophages. Because PS trans-bilayer asymmetry is not absolute in different types of nonapoptotic cells, we(More)
Mammalian cytochrome c (Cytc) transfers electrons from the bc(1) complex to cytochrome c oxidase (CcO) as part of the mitochondrial electron transport chain, and it also participates in type II apoptosis. Our recent discovery of two tyrosine phosphorylation sites in Cytc, Tyr97 in bovine heart and Tyr48 in bovine liver, indicates that Cytc functions are(More)
The primary life-supporting function of cytochrome c (cyt c) is control of cellular energetic metabolism as a mobile shuttle in the electron transport chain of mitochondria. Recently, cyt c's equally important life-terminating function as a trigger and regulator of apoptosis was identified. This dreadful role is realized through the relocalization of(More)
Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the(More)
Intracellular safeguarding functions of metallothioneins (MTs) include sequestering transition and heavy metals, scavenging free radicals and protecting against electrophiles. We report that MT protection against Cu-induced cytotoxicity can be reversed and pro-oxidant and pro-apoptotic effects can be induced in HL-60 cells exposed to NO. We demonstrate that(More)