Grigorios Loukides

Learn More
K-anonymisation is an approach to protecting privacy contained within a data set. A good k-anonymisation algorithm should anonymise a data set in such a way that private information contained within it is hidden, yet anonymised data is still useful in intended applications. Maximising both data usefulness and privacy protection in k-anonymisation is however(More)
OBJECTIVE De-identified clinical data in standardized form (eg, diagnosis codes), derived from electronic medical records, are increasingly combined with research data (eg, DNA sequences) and disseminated to enable scientific investigations. This study examines whether released data can be linked with identified clinical records that are accessible via(More)
Sequence datasets are encountered in a plethora of applications spanning from web usage analysis to healthcare studies and ubiquitous computing. Disseminating such datasets offers remarkable opportunities for discovering interesting knowledge patterns, but may lead to serious privacy violations if sensitive patterns, such as business secrets, are disclosed.(More)
<i>K</i>-anonymisation is an approach to protecting privacy contained within a dataset. A good <i>k</i>-anonymisation algorithm should anonymise a dataset in such a way that private information contained within it is hidden, yet the anonymised data is still useful in intended applications. However, maximising both data utility and privacy protection in(More)
Electronic medical record (EMR) systems have enabled healthcare providers to collect detailed patient information from the primary care domain. At the same time, longitudinal data from EMRs are increasingly combined with biorepositories to generate personalized clinical decision support protocols. Emerging policies encourage investigators to disseminate(More)
Publishing datasets about individuals that contain both re-lational and transaction (i.e., set-valued) attributes is essential to support many applications, ranging from healthcare to marketing. However, preserving the privacy and utility of these datasets is challenging, as it requires (i) guarding against attackers, whose knowledge spans both attribute(More)
K-anonymisation is an approach to protecting individuals from being identified from data. Good k-anonymisations should retain data utility and preserve privacy, but few methods have considered these two conflicting requirements together. In this paper, we extend our previous work on a clustering-based method for balancing data utility and privacy(More)