Learn More
Lipids are the predominant source of energy for fish. The mechanisms by which fish allocate energy from lipids, for metabolism, development, growth and reproduction are critical for understanding key life history strategies and transitions. Currently, the major lipid component in aquaculture diets is fish oil (FO), derived from wild capture fisheries that(More)
The cloning and characterization of cDNAs and genes encoding three peroxisome proliferator-activated receptor (PPAR) isotypes from two species of marine fish, the plaice (Pleuronectes platessa) and the gilthead sea bream (Sparus aurata), are reported for the first time. Although differences in the genomic organization of the fish PPAR genes compared with(More)
Three novel members of the Xenopus nuclear hormone receptor superfamily have been cloned. They are related to each other and similar to the group of receptors that includes those for thyroid hormones, retinoids, and vitamin D3. Their transcriptional activity is regulated by agents causing peroxisome proliferation and carcinogenesis in rodent liver. All(More)
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily that functions as critical regulators of lipid and energy homeostasis. Although intensively studied in mammals, their basic biological functions are still poorly understood. The objective of this work was to(More)
Peroxisome proliferator activated receptors are ligand activated transcription factors belonging to the nuclear hormone receptor superfamily. Three cDNAs encoding such receptors have been isolated from Xenopus laevis (xPPAR alpha, beta, and gamma). Furthermore, the gene coding for xPPAR beta has been cloned, thus being the first member of this subfamily(More)
Understanding the control of piscine fatty acid metabolism is important for determining the nutritional requirements of fish, and hence for the production of optimal aquaculture diets. The regulation and expression of carnitine palmitoyltransferase 1 (CPT1; EC No 2.3.1.21) are critical processes in the control of fatty acid metabolism, and here we report a(More)
Disclaimer. This is not the definitive version of record of this article. This manuscript has been accepted for publication in Journal of Molecular Endocrinology, but the version presented here has not yet been copy edited, formatted or proofed. Consequently, the Society for Endocrinology accepts no responsibility for any errors or omissions it may contain.(More)
In transmissible spongiform encephalopathies (TSEs), a group of fatal neurodegenerative disorders affecting many species, the key event in disease pathogenesis is the accumulation of an abnormal conformational isoform (PrP(Sc)) of the host-encoded cellular prion protein (PrP(C)). While the precise mechanism of the PrP(C) to PrP(Sc) conversion is not(More)
  • 1