Learn More
1. Compared to bioclimatic variables, remote sensing predictors are rarely used for pre-dictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial(More)
America's forests are thought to be a significant sink for atmospheric carbon. Currently, the rate of sequestration by forests on the continent has been estimated at 0.23 petagrams of carbon per year, though the uncertainty about this estimate is nearly 50%. This offsets about 13% of the fossil fuel emissions from the continent [Pacala et al., 2007].(More)
Multi-phase surveys are often conducted in forestry, with the goal of estimating tree characteristics and volume over large regions. Design-based estimation of such q u a n tities, based on information gathered during ground visits of sampled plots, can be made more precise by incorporating auxiliary information available from remote sensing. The exact(More)
Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess(More)
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o In this study retrievals of forest canopy height(More)
Tree canopy cover is a fundamental component of the landscape, and the amount of cover influences fire behavior, air pollution mitigation, and carbon storage. As such, efforts to empirically model percent tree canopy cover across the United States are a critical area of research. The 2001 national-scale canopy cover modeling and mapping effort was completed(More)
Understanding the potential of forest ecosystems as global carbon sinks requires a thorough knowledge of forest carbon dynamics, including both sequestration and fluxes among multiple pools. The accurate quantification of biomass is important to better understand forest productivity and carbon cycling dynamics. Stand-based inventories (SBIs) are widely used(More)
a r t i c l e i n f o Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectro-radiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometric–optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and(More)
The ModelMap package (Freeman, 2009) for R (R Development Core Team, 2008) enables user-friendly modeling, validation, and mapping over large geographic areas though a single R function or GUI interface. It constructs predictive models of continuous or discrete responses using Random Forests or Stochastic Gradient Boosting. It validates these models with an(More)