Gretchen Baneyx

Learn More
Evidence is emerging that mechanical stretching can alter the functional states of proteins. Fibronectin (Fn) is a large, extracellular matrix protein that is assembled by cells into elastic fibrils and subjected to contractile forces. Assembly into fibrils coincides with expression of biological recognition sites that are buried in Fn's soluble state. To(More)
SPARC, a 32-kDa matricellular glycoprotein, mediates interactions between cells and their extracellular matrix, and targeted deletion of Sparc results in compromised extracellular matrix in mice. Fibronectin matrix provides provisional tissue scaffolding during development and wound healing and is essential for the stabilization of mature extracellular(More)
Fluorescence resonance energy transfer (FRET) between fluorophores attached to single proteins provides a tool to study the conformation of proteins in solution and in cell culture. As a protein unfolds, nanometer-scale increases in distance between donor and acceptor fluorophores cause decreases in FRET. Here we demonstrate the application of FRET to(More)
Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Several major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce(More)
The cell-mediated assembly of fibronectin (Fn) into fibrillar matrices is a complex multistep process that is incompletely understood because of the chemical complexity of the extracellular matrix and a lack of experimental control over molecular interactions and dynamic events. We have identified conditions under which Fn assembles into extended fibrillar(More)
While the mechanical properties of a substrate or engineered scaffold can govern numerous aspects of cell behavior, cells quickly start to assemble their own matrix and will ultimately respond to their self-made extracellular matrix (ECM) microenvironments. Using fluorescence resonance energy transfer (FRET), we detected major changes in the conformation of(More)
Intriguing experimental and computational data are emerging to suggest that mechanical forces regulate the functional states of some proteins by stretching them into nonequilibrium states. Using the extracellular matrix protein fibronectin as an example, we discuss molecular design principles that might control the exposure of a protein's recognition sites,(More)
The inability of biomaterial scaffolds to functionally integrate into surrounding tissue is one of the major roadblocks to developing new biomaterials and tissue-engineering scaffolds. Despite considerable advances, current approaches to engineering cell-surface interactions fall short in mimicking the complexity of signals through which surrounding tissue(More)
The conformation of the extracellular matrix protein fibronectin plays a critical role in regulating cell function, including cell adhesion and migration. While average conformations of large ensembles of adhesion proteins have been previously measured, cells may sensitively respond to conformational outliers. We therefore applied both single molecule(More)
The growth of natural biominerals is often tightly regulated by surface adsorption and subsequent incorporation of proteins into the crystal structure. Understanding how macromolecules intercalate into inorganic crystal lattices and how incorporation affects protein structure is crucial to learning how to engineer biomimetic materials with advanced(More)
  • 1