Gregory William Moseley

Learn More
Immune evasion by rabies virus depends on targeting of the signal transducers and activator of transcription 1 (STAT1) and STAT2 proteins by the viral interferon antagonist P protein, but targeting of other STAT proteins has not been investigated. Here, we find that P protein associates with activated STAT3 and inhibits STAT3 nuclear accumulation and(More)
Macromolecules and supramolecular complexes are frequently required to enter and exit the nucleus during normal cell function, but access is restricted and exchange to and from the nucleus is tightly controlled. We describe the mechanisms which regulate nuclear import of endogenous molecules and indicate how viruses exploit these mechanisms during their(More)
The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show(More)
The fixed rabies virus (RV) strain Nishigahara kills adult mice after intracerebral inoculation, whereas the chicken embryo fibroblast cell-adapted strain Ni-CE causes nonlethal infection in adult mice. We previously reported that the chimeric CE(NiP) strain, which has the phosphoprotein (P protein) gene from the Nishigahara strain in the genetic background(More)
The tetraspanin membrane protein CD151 is a broadly expressed molecule noted for its strong molecular associations with integrins, especially alpha3beta1, alpha6beta1, alpha7beta1, and alpha6beta4. In vitro functional studies have pointed to a role for CD151 in cell-cell adhesion, cell migration, platelet aggregation, and angiogenesis. It has also been(More)
BACKGROUND Rabies virus (RABV) causes rabies disease resulting in >55,000 human deaths/year. The multifunctional RABV P-protein has essential roles in genome replication, and forms interactions with cellular STAT proteins that are thought to underlie viral antagonism of interferon-dependent immunity. However, the molecular details of P-protein-STAT(More)
Nuclear protein import is dependent on specific targeting signals within cargo proteins recognized by importins (IMPs) that mediate translocation through the nuclear pore. Recent evidence, however, implicates a role for the microtubule (MT) network in facilitating nuclear import of the cancer regulatory proteins parathyroid hormone-related protein (PTHrP)(More)
The identification of novel targets and strategies for therapy of microbial infections is an area of intensive research due to the failure of conventional vaccines or antibiotics to combat both newly emerging diseases (e.g. viruses such as severe acute respiratory syndrome (SARS) and new influenza strains, and antibiotic-resistant bacteria) and entrenched,(More)
Nuclear localization sequence (NLS)-dependent nuclear protein import is not conventionally held to require interaction with microtubules (MTs) or components of the MT motor, dynein. Here we report for the first time the role of sequences conferring association with dynein light chains (DLCs) in NLS-dependent nuclear accumulation of the rabies virus(More)