Gregory W. Peek

Learn More
Over the past decade, there has been much interest in the regulation of telomerase, the enzyme responsible for maintaining the integrity of chromosomal ends, and its crucial role in cellular immortalization, tumorigenesis, and the progression of cancer. Telomerase activity is characterized by the expression of the telomerase reverse transcriptase (TERT)(More)
MicroRNAs (miRNAs) are remarkable molecules that appear to have a fundamental role in the biology of the cell. They constitute a class of non-protein encoding RNA molecules which have now emerged as key players in regulating the activity of mRNA. miRNAs are small RNAmolecules around 22 nucleotides in length, which affect the activity of specific mRNA,(More)
Histone deacetylases (HDACs) are homologous to prokaryotic enzymes that removed acetyl groups from non-histone proteins before the evolution of eukaryotic histones. Enzymes inherited from prokaryotes or from a common ancestor were adapted for histone deacetylation, while useful deacetylation of non-histone proteins was selectively retained. Histone(More)
As a potential means to reduce proliferation of breast cancer cells, a multiple-pathway approach with no effect on control cells was explored. The human interactome being constructed by the Center for Cancer Systems Biology will prove indispensable to understanding composite effects of multiple pathways, but its discovered protein-protein interactions(More)
Human telomerase reverse transcriptase (hTERT) is the catalytic and limiting component of telomerase and also a transcription factor. It is critical to the integrity of the ends of linear chromosomes and to the regulation, extent and rate of cell cycle progression in multicellular eukaryotes. The level of hTERT expression is essential to a wide range of(More)
  • 1