Gregory W. Charville

Learn More
Among the key properties that distinguish adult mammalian stem cells from their more differentiated progeny is the ability of stem cells to remain in a quiescent state for prolonged periods of time. However, the molecular pathways for the maintenance of stem-cell quiescence remain elusive. Here we use adult mouse muscle stem cells (satellite cells) as a(More)
The ability to maintain quiescence is critical for the long-term maintenance of a functional stem cell pool. To date, the epigenetic and transcriptional characteristics of quiescent stem cells and how they change with age remain largely unknown. In this study, we explore the chromatin features of adult skeletal muscle stem cells, or satellite cells (SCs),(More)
A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate(More)
The ability of nitric oxide (NO)-releasing xerogels to reduce fibrinogen-mediated adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli is described. A negative correlation was observed between NO surface flux and bacterial adhesion for each species tested. For S. aureus and E. coli, reduced adhesion correlated directly with NO(More)
Adult stem cells maintain the mature tissues of metazoans. They do so by reproducing in such a way that their progeny either differentiate, and thus contribute functionally to a tissue, or remain uncommitted and replenish the stem cell pool. Because ageing manifests as a general decline in tissue function, diminished stem cell-mediated tissue maintenance(More)
The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology, and it has been a major focus of research across tissues in different organisms. Muscle stem cells (MuSCs) are now among the most intensely studied stem cell populations in mammalian systems, and the prospective isolation of these cells has(More)
If a eukaryotic cell is to reproduce, it must duplicate its genetic information in the form of DNA, and faithfully segregate that information during a complex process of cell division. During this division process, the resulting cells inherit one, and only one, copy of each chromosome. Over thirty years ago, it was predicted that the segregation of sister(More)
Rhabdomyosarcoma, the most common soft tissue malignancy of childhood, is a morphologically variable tumor defined by its phenotype of skeletal muscle differentiation. The diagnosis of rhabdomyosarcoma often relies in part on the identification of myogenic gene expression using immunohistochemical or molecular techniques. However, these techniques show(More)
Klippel-Feil syndrome (KFS) is associated with numerous craniofacial abnormalities but rarely with skull base tumor formation. We report an unusual and dramatic case of a symptomatic, mature skull base teratoma in an adult patient with KFS, with extension through the basisphenoid to obstruct the nasopharynx. This benign lesion was associated with midline(More)