Gregory V. Osipov

Learn More
Here we propose mechanisms for suppressing non-steady-state motions--propagating pulses, spiral waves, spiral-wave chaos--in excitable media. Our approach is based on two points: (1) excitable media are multistable; and (2) traveling waves in excitable media can be separated into fast and slow motions, which can be considered independently. We show that(More)
Stochastic noise of an appropriate amplitude can maximize the coherence of the dynamics of certain types of excitable systems via a phenomenon known as coherence resonance (CR). In this paper we demonstrate, using a simple excitable system, the mechanism underlying the generation of CR. Using analytical expressions for the spectral density of the system's(More)
Recent findings indicate that ventricular fibrillation might arise from spiral wave chaos. Our objective in this computational study was to investigate wave interactions in excitable media and to explore the feasibility of using overdrive pacing to suppress spiral wave chaos. This work is based on the finding that in excitable media, propagating waves with(More)
A unidirectional coupling scheme is investigated in double scroll type chaotic oscillators that reveal interesting multiscroll dynamics. Instead of using self-oscillatory systems, in this scheme, double scroll chaos from one oscillator is forced into another similar oscillator in a resting state. This coupling scheme is explored in the Chua oscillator, a(More)
  • 1