Learn More
The lipid second messenger phosphatidylinositol 3-phosphate [PI(3)P] plays a crucial role in intracellular membrane trafficking. We report here that myotubularin, a protein tyrosine phosphatase required for muscle cell differentiation, is a potent PI(3)P phosphatase. Recombinant human myotubularin specifically dephosphorylates PI(3)P in vitro.(More)
Protein tyrosine phosphatases (PTPs) are a diverse group of enzymes that contain a highly conserved active site motif, Cys-x5-Arg (Cx5R). The PTP superfamily enzymes, which include tyrosine-specific, dual specificity, low-molecular-weight, and Cdc25 phosphatases, are key mediators of a wide variety of cellular processes, including growth, metabolism,(More)
Myotubularin-related proteins are a large subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in members of the myotubularin family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. The crystal structure of a representative member of this(More)
Xu et al. 2001). Moreover, the solution structure of the p47 phox PX domain published in Nature Structural Biology offers intriguing insights into possible mechanisms for the regulation of PX domain function (Hiroaki et al., 2001). This review will focus on structural and functional insights into the PX domain as a novel The coordination of cellular(More)
In human cancer, PTEN (Phosphatase and TENsin homolog on chromosome 10, also referred to as MMAC1 and TEP1) is a frequently mutated tumor suppressor gene. We have used the zebrafish as a model to investigate the role of Pten in embryonic development and tumorigenesis. The zebrafish genome encodes two pten genes, ptena and ptenb. Here, we report that both(More)
Phosphoinositides play an integral role in a diverse array of cellular signaling processes. Although considerable effort has been directed toward characterizing the kinases that produce inositol lipid second messengers, the study of phosphatases that oppose these kinases remains limited. Current research is focused on the identification of novel lipid(More)
Myotubularin related protein 2 (MTMR2) is a member of the myotubularin family of phosphoinositide lipid phosphatases. Although MTMR2 dephosphorylates the phosphoinositides PI(3)P and PI(3,5)P2, the phosphoinositide binding proteins that are regulated by MTMR2 are poorly characterized. In this study, phosphoinositide affinity chromatography coupled to mass(More)
Metastasis causes most deaths from cancer yet mechanistic understanding and therapeutic options remain limited. Overexpression of the phosphatase PRL-3 (phosphatase of regenerating liver) is associated with metastasis of colon cancer. Here, we show that PRL-3 is a direct target of signaling by TGFβ, which is broadly implicated in progression and metastasis.(More)
Myotubularin is the archetype of a family of highly conserved protein-tyrosine phosphatase-like enzymes. The myotubularin gene, MTM1, is mutated in the genetic disorder, X-linked myotubular myopathy. We and others have previously shown that myotubularin utilizes the lipid second messenger, phosphatidylinositol 3-phosphate (PI(3)P), as a physiologic(More)