Gregory S. Basarab

Learn More
BACKGROUND Trihydroxynaphthalene reductase catalyzes two intermediate steps in the fungal melanin biosynthetic pathway. The enzyme, a typical short-chain dehydrogenase, is the biochemical target of three commercial fungicides. The fungicides bind preferentially to the NADPH form of the enzyme. RESULTS Three X-ray structures of the Magnaporthe grisea(More)
We explore the use of site-directed mutations of scytalone dehydratase to study inhibitor binding interactions. The enzyme is the physiological target of new fungicides and the subject of inhibitor design and optimization. X-ray structures show that potent inhibitors (K(i)'s approximately 10(-)(11) M) interact mostly with 11 amino acid side chains and, in(More)
High-throughput screening uncovered a pyrazolopyrimidinedione hit as a selective, low micromolar inhibitor of Helicobacter pylori glutamate racemase (MurI). Variation of the substituents around the scaffold led to low nanomolar inhibitors and improved antibacterial activity. The challenge in this program was to translate excellent enzyme inhibition into(More)
Five X-ray crystal structures of scytalone dehydratase complexed with different inhibitors have delineated conformationally flexible regions of the binding pocket. This information was used for the design and synthesis of a norephedrine-derived cyanoacetamide class of inhibitors leading to potent fungicides.
Alternative substrates and site-directed mutations of active-site residues are used to probe factors controlling the catalytic efficacy of scytalone dehydratase. In the E1cb-like, syn-elimination reactions catalyzed, efficient catalysis requires distortion of the substrate ring system to facilitate proton abstraction from its C2 methylene and elimination of(More)
On the basis of the X-ray crystal structure of scytalone dehydratase complexed with an active center inhibitor [Lundqvist, T., Rice, J., Hodge, C. N., Basarab, G. S., Pierce, J. and Lindqvist, Y. (1994) Structure (London) 2, 937-944], eight active-site residues were mutated to examine their roles in the catalytic mechanism. All but one residue (Lys73, a(More)
An SAR study of an HTS screening hit generated a series of pyridodiazepine amines as potent inhibitors of Helicobacter pylori glutamate racemase (MurI) showing highly selective anti-H. pylori activity, marked improved solubility, and reduced plasma protein binding. X-ray co-crystal E-I structures were obtained. These uncompetitive inhibitors bind at the(More)
In D(2)O, scytalone exchanges its two C2 hydrogen atoms for deuterium atoms at different rates. At pD 7.0 and 25 degrees C, half-lives for the exchanges are 0.8 and 10 days for the pro-S and pro-R hydrogens, respectively. The differential exchange rates allow for the preparation of multiple scytalone samples (through incubation of scytalone in D(2)O and(More)
We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal(More)
The compounds described herein with a spirocyclic architecture fused to a benzisoxazole ring represent a new class of antibacterial agents that operate by inhibition of DNA gyrase as corroborated in an enzyme assay and by the inhibition of precursor thymidine into DNA during cell growth. Activity resided in the configurationally lowest energy (2S,4R,4aR)(More)