Learn More
Microglia are increasingly implicated as a source of non-neural regulation of postnatal neurogenesis and neuronal development. To evaluate better the contributions of microglia to neural stem cells (NSCs) of the subventricular neuraxis, we employed an adherent culture system that models the continuing proliferation and differentiation of the dissociated(More)
Microglia, the resident immune cells of the brain, have recently been hypothesized to play a role both in neuronal diseases and age-related neurogenic decline, and are theorized to be modulators of adult neurogenesis. Current methods for the isolation of microglia from cultured primary brain tissue result in relatively poor yield, requiring a large tissue(More)
Spatially and temporally restricted populations of neurogenic astrocytes can generate multipotent neurospheres in vitro. To examine the ability of neurogenic astrocytes to respond to in vivo differentiation cues within a germinal matrix, we provided cultured neonatal cerebellar astrocytes access to the subependymal zone (SEZ) by grafting them directly into(More)
An important issue in stem cell biology relates to mechanisms of cellular plasticity. Specifically, could any observed multipotency of, e.g., adult stem cells arise from true transdifferentiation or as a result of cell-cell fusion? We studied this issue using a culture paradigm of astrocyte monolayers and multipotent neurospheres generated from neonatal(More)
Bromodeoxyuridine (BrdU) is a halogenated pyrimidine that incorporates into newly synthesized DNA during the S phase. BrdU is used ubiquitously in cell birthdating studies and as a means of measuring the proliferative index of various cell populations. In the absence of secondary stressors, BrdU is thought to incorporate relatively benignly into replicating(More)
Since their initial description in 1992, neurospheres have appeared in some aspect of more than a thousand published studies. Despite their ubiquitous presence in the scientific literature, there is little consensus regarding the fundamental defining characteristics of neurospheres; thus, there is little agreement about what, if anything, the neurosphere(More)
Hematopoietic stem cells have been defined by their ability to self-renew and successfully reconstitute hematopoiesis throughout the life of a transplant recipient. Neural stem cells (NSCs) are believed to exist in the regenerating regions of the brain in adult mice: the subependymal zone (SEZ) of the lateral ventricles (LVs) and the hippocampal dentate(More)
The subependymal zone (SEZ) is a region of persistent neurogenesis in the adult mammalian brain containing a neural stem cell (NSC) pool that continuously generates migratory neuroblasts that travel in chains through the rostral migratory stream (RMS) to the olfactory bulb (OB), where they differentiate and functionally integrate into existing neural(More)
Microglia isolated from the neurogenic subependymal zone (SEZ) and hippocampus (HC) are capable of massive in vitro population expansion that is not possible with microglia isolated from non-neurogenic regions. We asked if this regional heterogeneity in microglial proliferative capacity is cell intrinsic, or is conferred by interaction with respective(More)