Gregory M. Sutton

Learn More
The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry(More)
Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin(More)
Obesity and nutrient homeostasis are linked by mechanisms that are not fully elucidated. Here we describe a secreted protein, adropin, encoded by a gene, Energy Homeostasis Associated (Enho), expressed in liver and brain. Liver Enho expression is regulated by nutrition: lean C57BL/6J mice fed high-fat diet (HFD) exhibited a rapid increase, while fasting(More)
The burden of type 2 diabetes and its associated premature morbidity and mortality is rapidly growing, and the need for novel efficacious treatments is pressing. We report here that serotonin 2C receptor (5-HT(2C)R) agonists, typically investigated for their anorectic properties, significantly improve glucose tolerance and reduce plasma insulin in murine(More)
Ingestive behavior is controlled by a complex interplay between signals conveying availability of (1) potentially ingestible food in the environment, (2) digestible food in the alimentary canal, (3) circulating fuels and (4) stored fuels. Each of these four classes of signals interact with specific sensors and neural circuits whose integrated output(More)
The nucleus tractus solitarius (NTS) integrates visceral sensory signals with information from the forebrain to control homeostatic functions, including food intake. Melanocortin 3/4 receptor (MC3/4R) ligands administered directly to the caudal brainstem powerfully modulate meal size but not frequency, suggesting the enhancement of visceral satiety signals.(More)
Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A(More)
OBJECTIVE Understanding the regulation of adipocyte differentiation by cellular and extracellular factors is crucial for better management of chronic conditions such as obesity, insulin resistance and lipodystrophy. Experimental infection of rats with a human adenovirus type 36 (Ad-36) improves insulin sensitivity and promotes adipogenesis, reminiscent of(More)
Signals from the gut and hypothalamus converge in the caudal brainstem to control ingestive behavior. We have previously shown that phosphorylation of ERK1/2 in the solitary nucleus (NTS) is necessary for food intake suppression by exogenous cholecystokinin (CCK). Here we test whether this intracellular signaling cascade is also involved in the integration(More)
Entrainment of anticipatory activity and wakefulness to nutrient availability is a poorly understood component of energy homeostasis. Restricted feeding (RF) paradigms with a periodicity of 24 h rapidly induce entrainment of rhythms anticipating food presentation that are independent of master clocks in the suprachiasmatic nucleus (SCN) but do require other(More)