Learn More
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the(More)
The Laser Interferometer Gravitational-Wave Observatory has performed a third science run with much improved sensitivities of all three interferometers. We present an analysis of approximately 200 hours of data acquired during this run, used to search for a stochastic background of gravitational radiation. We place upper bounds on the energy density stored(More)
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter(More)
We report on a search for gravitational waves from binary black hole inspirals in the data from the second science run of the LIGO interferometers. The search focused on binary systems with component masses between 3 and 20M. Optimally oriented binaries with distances up to 1 Mpc could be detected with efficiency of at least 90%. We found no events that(More)
A search for periodic gravitational waves, from sources such as isolated rapidly spinning neutron stars, was carried out using 510 h of data from the fourth LIGO science run (S4). The search was for quasimonochromatic waves in the frequency range from 50 to 1500 Hz, with a linear frequency drift _ f (measured at the solar system barycenter) in the range Àf=(More)
We report on thermal noise from the internal friction of dielectric coatings made from alternating layers of Ta 2 O 5 and SiO 2 deposited on fused silica substrates. We present calculations of the thermal noise in gravitational wave interferometers due to optical coatings, when the material properties of the coating are different from those of the substrate(More)
Current interferometric gravitational wave detectors use test masses with mirror coatings formed from multiple layers of dielectric materials, most commonly alternating layers of SiO 2 (silica) and Ta 2 O 5 (tantala). However, mechanical loss in the Ta 2 O 5 /SiO 2 coatings may limit the design sensitivity for advanced detectors. We have investigated(More)