Gregory M. Cook

Learn More
Biomass formation represents one of the most basic aspects of bacterial metabolism. While there is an abundance of information concerning individual reactions that result in cell duplication, there has been surprisingly little information on the bioenergetics of growth. For many years, it was assumed that biomass production (anabolism) was proportional to(More)
Results currently available clearly indicate that the metabolite-activated protein kinase-mediated phosphorylation of Ser-46 in HPr plays a key role in catabolite repression and the control of inducer levels in low-GC Gram-positive bacteria. This protein kinase is not found in enteric bacteria such as E. coli and Salmonella typhimurium where an entirely(More)
Mycobacteria are likely to encounter acidic pH in the environments they inhabit; however intracellular pH homeostasis has not been investigated in these bacteria. In this study, Mycobacterium smegmatis and Mycobacterium bovis [Bacille Calmette--Guérin (BCG)] were used as examples of fast- and slow-growing mycobacteria, respectively, to study biochemical and(More)
Two environmental sites in New Zealand were sampled (e.g., water and sediment) for bacterial isolates that could use either arsenite as an electron donor or arsenate as an electron acceptor under aerobic and anaerobic growth conditions, respectively. These two sites were subjected to widespread arsenic contamination from mine tailings generated from(More)
Bacteria are the most remarkable organisms in the biosphere, surviving and growing in environments that support no other life forms. Underlying this ability is a flexible metabolism controlled by a multitude of environmental sensors and regulators of gene expression. It is not surprising, therefore, that bacterial respiration is complex and highly(More)
Mycobacterium tuberculosis is a prototrophic, metabolically flexible bacterium that has achieved a spread in the human population that is unmatched by any other bacterial pathogen. The success of M. tuberculosis as a pathogen can be attributed to its extraordinary stealth and capacity to adapt to environmental changes throughout the course of infection.(More)
When the extracellular pH was increased from 7.6 to 9.8, Clostridium paradoxum, a novel alkalithermophile, increased its pH gradient across the cell membrane ((Delta)pH, pH(infin) - pH(infout)) by as much as 1.3 U. At higher pH values (>10.0), the (Delta)pH and membrane potential ((Delta)(psi)) eventually declined, and the intracellular pH increased(More)
Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture.(More)
Glucose-excess cultures of Streptococcus bovis consumed glucose faster than the amount that could be explained by growth or maintenance, and nongrowing chloramphenicol-treated cells had a rate of glucose consumption that was 10-fold greater than the maintenance rate. Because N,N-dicyclohexylcarbodiimide, an inhibitor of the membrane-bound F1F0 ATPase,(More)
Streptococcus bovis had a diauxic pattern of glucose and lactose utilization, and both of these sugars were transported by the sugar phosphotransferase system (PTS). Lactose catabolism was inducible, and S. bovis used the tagatose pathway to ferment lactose. Since a mutant that was deficient in glucose PTS activity transported lactose as fast as the(More)