Gregory L. Hillhouse

Learn More
1-Adamantyl- and mesitylazide react with (dtbpe)Ni=CPh(2) (1; dtbpe = 1,2-bis(di-tert-butylphosphino)ethane) at ambient temperature to give the ketimines RN=CPh(2) (2a, R = Mes; 2b, R = Ad) in high yield. Kinetic studies for the reaction of 1 with N(3)Ad yield activation parameters of DeltaH(double dagger) = +8(+/-1) kcal/mol and DeltaS(double dagger) =(More)
Reaction of the N-tosylaziridines (p-CH(3)C(6)H(4)SO(2))NCH(2)CHR (1a, R = H; 1b, R = Me; 1c, R = n-Bu; 1d, R = i-Pr) with (bpy)Ni(cod) (2; bpy = 2,2'-bipyridine; cod = 1,5-cyclooctadiene) or (bpy)NiEt(2) (3) results in elimination of cod or butane from 2 and 3, respectively, and oxidative addition of an aziridine C-N bond to give the azametallacyclobutane(More)
An exceptionally low coordinate nickel imido complex, (IPr*)Ni═N(dmp) (2) (dmp = 2,6-dimesitylphenyl), has been prepared by the elimination of N2 from a bulky aryl azide in its reaction with (IPr*)Ni(η6-C7H8) (1). The solid-state structure of 2 features two-coordinate nickel with a linear C−Ni−N core and a short Ni−N distance, both indicative of(More)
Reaction of CS(2) with [(dtbpe)Ni](2)(η(2),μ-C(6)H(6)) (1; dtbpe =1,2-bis(di-tert-butylphosphino)ethane) in toluene gives the carbon disulfide complex (dtbpe)Ni(η(2)-CS(2)) (2), characterized by standard spectroscopic methods and X-ray crystallography. Reaction of CS(2) with the Ni(I) complex (dtbpe)Ni(OSO(2)CF(3)) gives the diamagnetic, trimetallic cluster(More)
Hydrogen-atom abstraction from M-E(H) to generate M═E-containing complexes (E = PR, NR) is not well studied because only a few complexes are known to undergo such reactions. Hydrogen-atom abstraction from nickel(I) phosphide and amide complexes led to the corresponding phosphinidene and imide compounds. These reactions are unparalleled in the organometallic(More)
Reaction of the dimeric Ni(I) chloride complex [(dtbpe)NiCl](2) (1) with dimesitylsilyl potassium affords the three-coordinate Ni(I) silyl complex (dtbpe)Ni(SiHMes(2)) (2). Alternatively, 2 can be prepared by an oxidative-addition reaction of Mes(2)Si(H)OTf (Tf = CF(3)SO(3)) with the nickel(0) complex [(dtbpe)Ni](2)(mu-C(6)H(6)) (3), with (dtbpe)Ni(OTf) (4)(More)
1-Adamantyl- and mesitylazide react with [(dtbpe)Ni]2(eta2-mu-C6H6) to give the eta2 organic azide adducts (dtbpe)Ni(eta2-N3R) (R = Ad, 3a; Mes, 3b) that have been isolated in good yields and crystallographically characterized. These azide adducts are intermediates in the formation of the corresponding terminal imido complexes (dtbpe)NiNR (R = Ad, 4a; Mes,(More)
The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2)(More)
A new family of low-coordinate nickel imides supported by 1,2-bis(di-tert-butylphosphino)ethane was synthesized. Oxidation of nickel(II) complexes led to the formation of both aryl- and alkyl-substituted nickel(III)-imides, and examples of both types have been isolated and fully characterized. The aryl substituent that proved most useful in stabilizing the(More)