Learn More
In the present study we have identified the extracellular matrix protein agrin as a major heparan sulfate proteoglycan (HSPG) in embryonic chick brain. Using monoclonal antibodies and a polyclonal antiserum to the core protein of a previously identified HSPG from embryonic chick brain, our expression screened a random-primed E9 chick brain cDNA library.(More)
Cell-cell interactions are of critical importance during neural development, particularly since the migration of neural cells and the establishment of functional interactions between growing axons and their target cells has been suggested to depend upon cell recognition processes. Neurone-neurone adhesion has been well studied in vitro, and is mediated in(More)
Previous studies have reported that the cell-binding region of the neural cell adhesion molecule (N-CAM) resides in a 65,000-D amino-terminal fragment designated Frl (Cunningham, B. A., S. Hoffman, U. Rutishauser, J. J. Hemperly, and G. M. Edelman, 1983, Proc. Natl. Acad. Sci. USA, 80:3116-3120). We have reported the presence of two functional domains in(More)
The mechanisms that generate specific neuronal connections in the brain are under intense investigation. In zebrafish, retinal ganglion cells project their axons into at least six layers within the neuropil of the midbrain tectum. Each axon elaborates a single, planar arbor in one of the target layers and forms synapses onto the dendrites of tectal neurons.(More)
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat(More)
During development, trunk neural crest cells give rise to three primary classes of derivatives: glial cells, melanocytes, and neurons. As part of an effort to learn how neural crest diversification is regulated, we have produced monoclonal antibodies (MAbs) that recognize antigens expressed by neural crest cells early in development. One of these, MAb 7B3(More)
Agrin is an extracellular matrix heparan sulfate proteoglycan (HSPG) well known for its role in modulation of the neuromuscular junction during development. Although agrin is one of the major HSPGs of the brain, its function there remains elusive. Here we provide evidence suggesting a possible function for agrin in Alzheimer's disease brain. Agrin protein(More)
Recent studies have described the localization of functional and structural domains on the neural cell adhesion molecule NCAM. In the present study we have extended these observations to examine the location of the carbohydrate epitope recognized by the L2 monoclonal antibody. This carbohydrate moiety is localized to the 65,000-dalton amino-terminal(More)
Cell-substratum adhesion in the embryonic chicken nervous system has been shown to be mediated in part by a 170,000-mol-wt polypeptide that is a component of adherons. Attachment of retinal cells to the 170,000-mol-wt protein is inhibited by the C1H3 monoclonal antibody and by heparan sulfate (Cole, G. J., D. Schubert, and L. Glaser, 1985, J. Cell Biol.,(More)
Our laboratory has recently identified a keratan sulfate proteoglycan (KSPG), named claustrin, that inhibits neural cell adhesion and neurite outgrowth in the chick nervous system. Antisera prepared against claustrin were used to screen a cDNA expression library from embryonic day 9 chick brain. Initial characterization of positive cDNAs revealed a high(More)