Gregory J. Babcock

Learn More
Epstein-Barr virus-infected B cells in vivo demonstrate three distinct patterns of latent gene expression, depending on the differentiation stage of the cell. Tonsillar naive B cells express the EBNA2-dependent lymphoblastoid phenotype, characteristic of direct infection. Germinal center centroblasts and centrocytes as well as tonsillar memory B cells(More)
Epstein-Barr virus establishes latency in vitro by activating human B cells to become proliferating blasts, but in vivo it is benign. In the peripheral blood, the virus resides latently in resting B cells that we now show are restricted to the sIgD memory subset. However, in tonsils the virus shows no such restriction. We propose that EBV indiscriminately(More)
Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea, and recent outbreaks of strains with increased virulence underscore the importance of identifying novel approaches to treat and prevent relapse of Clostridium difficile-associated diarrhea (CDAD). CDAD pathology is induced by two exotoxins, toxin A and toxin B, which(More)
When Epstein-Barr virus (EBV) infects B cells in vitro, the result is a proliferating lymphoblast that expresses at least nine latent proteins. It is generally believed that these cells are rigorously controlled in vivo by cytotoxic T cells. Consistent with this, the latently infected cells in the peripheral blood of healthy carriers are not lymphoblasts.(More)
Hepatitis C virus (HCV) infection is a leading cause of liver transplantation and there is an urgent need to develop therapies to reduce rates of HCV infection of transplanted livers. Approved therapeutics for HCV are poorly tolerated and are of limited efficacy in this patient population. Human monoclonal antibody HCV1 recognizes a highly-conserved linear(More)
Surface plasmon resonance (SPR) biosensors offer a unique opportunity to study the binding activity of G protein-coupled receptors (GPCRs) in real time with minimal sample preparation. Using two chemokine receptors (CXCR4 and CCR5) as model systems, we captured the proteins from crude cell preparations onto the biosensor surface and reconstituted a lipid(More)
Alzheimer's disease is characterized by deposition of beta-amyloid peptide (Abeta) into plaques in the brain, leading to neuronal toxicity and dementia. Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system can also cause a dementia, and amyloid deposition in the central nervous system is significantly higher in HIV-1-infected(More)
BACKGROUND Severe acute respiratory syndrome (SARS) remains a significant public health concern after the epidemic in 2003. Human monoclonal antibodies (MAbs) that neutralize SARS-associated coronavirus (SARS-CoV) could provide protection for exposed individuals. METHODS Transgenic mice with human immunoglobulin genes were immunized with the recombinant(More)
The chemokine receptor CXCR4 plays critical roles in development, immune function, and human immunodeficiency virus type 1 (HIV-1) entry. Here we demonstrate that, like the CC-chemokine receptors CCR5 and CCR2b, CXCR4 is posttranslationally modified by sulfation of its amino-terminal tyrosines. The sulfate group at tyrosine 21 contributes substantially to(More)
Rapid allograft infection complicates liver transplantation (LT) in patients with hepatitis C virus (HCV). Pegylated interferon-α and ribavirin therapy after LT has significant toxicity and limited efficacy. The effect of a human monoclonal antibody targeting the HCV E2 glycoprotein (MBL-HCV1) on viral clearance was examined in a randomized, double-blind,(More)