Learn More
Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor conditions have far-reaching impacts on ecosystems because important mobile macroorganisms avoid or cannot survive in hypoxic zones. Climate models predict declines in oceanic dissolved oxygen produced by global warming. We constructed 50-year time series(More)
A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying(More)
We quantify abyssal global and deep Southern Ocean temperature trends between the 1990s and 2000s to assess the role of recent warming of these regions in global heat and sea level budgets. We compute warming rates with uncertainties along 28 full-depth, high-quality, hydrographic sections that have been occupied two or more times between 1980 and 2010. We(More)
1. An apparent inconsistency has been diagnosed between interannual variations in the net radiation imbalance inferred from satellite measurements and upper-ocean heating rate from in situ measurements, and this inconsistency has been interpreted as 'missing energy' in the system 2. Here we present a revised analysis of net radiation at the top of the(More)
Ocean was much more vigorous in the period from ϳ1350 to 1880 A.D. than in the recent past. Our simulations reflect primarily late–20th century oceanographic conditions and support the conclusion of a subordinate role for deep convection in the Southern Ocean during this time period (21). Our conclusion that present-day Southern Ocean uptake of(More)
[1] We observe a net loss of 3.2 (±1.1) Â 10 22 J of heat from the upper ocean between 2003 and 2005. Using a broad array of in situ ocean measurements, we present annual estimates of global upper-ocean heat content anomaly from 1993 through 2005. Including the recent downturn, the average warming rate for the entire 13-year period is 0.33 ± 0.23 W/m 2 (of(More)
Decadal changes of abyssal temperature in the Pacific Ocean are analyzed using high-quality, full-depth hydrographic sections, each occupied at least twice between 1984 and 2006. The deep warming found over this time period agrees with previous analyses. The analysis presented here suggests it may have occurred after 1991, at least in the North Pacific.(More)
The Solar Wind Ion Analyzer (SWIA) on the MAVEN mission will measure the solar wind ion flows around Mars, both in the upstream solar wind and in the magneto-sheath and tail regions inside the bow shock. The solar wind flux provides one of the key energy inputs that can drive atmospheric escape from the Martian system, as well as in part controlling the(More)