Gregory B. Willer

Learn More
Zebrafish with the young (yng) mutation show a defect in retinal cell differentiation. Here we demonstrate that a mutation in a brahma-related gene (brg1) is responsible for the yng phenotype. Brahma homologues function as essential subunits for SWI/SNF-type chromatin remodeling complexes. Our analysis indicates that brg1 is required for the wave of(More)
In this study, we have characterized the ocular defects in the recessive zebrafish mutant blowout that presents with a variably penetrant coloboma phenotype. blowout mutants develop unilateral or bilateral colobomas and as a result, the retina and retinal pigmented epithelium are not contained within the optic cup. Colobomas result from defects in optic(More)
Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have(More)
The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and(More)
We report phenotypic and genetic analyses of a recessive, larval lethal zebrafish mutant, bal(a69), characterized by severe eye defects and shortened body axis. The bal(a69) mutation was mapped to chromosome 24 near the laminin alpha 1 (lama1) gene. We analyzed the lama1 gene sequence within bal(a69) embryos and two allelic mutants, bal(arl) and bal(uw1).(More)
The zebrafish lens opaque (lop) mutant was previously isolated in a genetic screen and shown to lack rod and cone photoreceptors and exhibit lens opacity, or cataract, at 7 days post-fertilization (dpf). In this manuscript, we provide four different lines of evidence demonstrating that the lop phenotype results from a defect in the cdipt(More)
PURPOSE To establish the zebrafish platinum mutant as a model for studying vision defects caused by syndromic albinism diseases such as Chediak-Higashi syndrome, Griscelli syndrome, and Hermansky-Pudlak syndrome (HPS). METHODS Bulked segregant analysis and candidate gene sequencing revealed that the zebrafish platinum mutation is a single-nucleotide(More)
In humans, mutations in electron transfer flavoprotein (ETF) or electron transfer flavoprotein dehydrogenase (ETFDH) lead to MADD/glutaric aciduria type II, an autosomal recessively inherited disorder characterized by a broad spectrum of devastating neurological, systemic and metabolic symptoms. We show that a zebrafish mutant in ETFDH, xavier, and(More)
The zebrafish perplexed mutation disrupts cell proliferation and differentiation during retinal development. In addition, growth and morphogenesis of the tectum, jaw, and pectoral fins are also affected. Positional cloning was used to identify a mutation in the carbamoyl-phosphate synthetase2-aspartate transcarbamylase-dihydroorotase (cad) gene as possibly(More)
Multiple molecular cues guide neuronal axons to their targets during development. Previous studies in vitro have shown that mechanical stimulation also can affect axon growth; however, whether mechanical force contributes to axon guidance in vivo is unknown. We investigated the role of muscle contractions in the guidance of zebrafish peripheral Rohon-Beard(More)