Gregory B Osterman

Learn More
We describe the approach for the estimation of the atmospheric state, e.g., temperature, water, ozone, from calibrated, spectral radiances measured from the Tropospheric Emission Spectrometer (TES) onboard the Aura spacecraft. The methodology is based on the maximum a posteriori estimate, which mathematically requires the minimization of the difference(More)
A key component in the regularization of vertical atmospheric trace gas retrievals is the construction of constraint matrices. We introduce a novel method for developing a constraint matrix based on altitude-varying combinations of zeroth-, first-, and second-order derivatives of the trace gas profile. This constraint matrix can be optimized to minimize the(More)
[1] The Tropospheric Emission Spectrometer (TES) on the EOS Aura satellite makes global measurements of infrared radiances which are used to derive profiles of species such as O3, CO, H2O, HDO and CH4 as routine standard products. In addition, TES has a variety of special modes that provide denser spatial mapping over a limited geographical area. A(More)
We test the accuracy of our error analysis and retrieval performance by examining retrievals over an orbits’ worth of simulated data covering a variety of atmospheric conditions. The use of simulated data allows validation of the error analysis and retrieval algorithm by comparisons to the true values. To demonstrate typical results, two example retrievals(More)
We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadirstare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http: //croc.gsfc.nasa.gov/arcions/) during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field(More)
[1] We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650–2260 cm ). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud(More)
N. J. Livesey, M. J. Filipiak, L. Froidevaux, W. G. Read, A. Lambert, M. L. Santee, J. H. Jiang, H. C. Pumphrey, J. W. Waters, R. E. Cofield, D. T. Cuddy, W. H. Daffer, B. J. Drouin, R. A. Fuller, R. F. Jarnot, Y. B. Jiang, B. W. Knosp, Q. B. Li, V. S. Perun, M. J. Schwartz, W. V. Snyder, P. C. Stek, R. P. Thurstans, P. A. Wagner, M. Avery, E. V. Browell,(More)
[1] The Tropospheric Emission Spectrometer (TES) is an infrared instrument that was launched on board NASA’s Aura satellite in 2004. TES is the first instrument to provide vertical information on tropospheric ozone while simultaneously measuring CO on a global basis. Before they may be used for scientific study, TES profiles must first be validated to(More)
[1] Validation of Tropospheric Emission Spectrometer (TES) tropospheric CO profiles with in situ CO measurements from the Differential Absorption CO Measurement (DACOM) instrument during the Intercontinental Chemical Transport Experiment (INTEX)-B campaigns in March to May 2006 are presented. For each identified DACOM CO profile, one to three TES CO(More)
[1] The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS)-Aura spacecraft measures global profiles of atmospheric ozone with vertical resolution of 6–7 km in the troposphere for the nadir view. For a first validation of TES ozone measurements we have compared TES-retrieved ozone profiles to ozonesondes from fall, 2004. In some(More)