Gregory A. Babbitt

Learn More
The study of fluctuating asymmetry has been controversial because of conflicting results found in much of the primary literature. It has been suggested that the source of this conflict is the fact that the basis of fluctuating asymmetry is poorly understood and that, as a consequence, methodology of fluctuating asymmetry studies may be flawed. A new model(More)
One prominent pattern of mutational frequency, long appreciated in comparative genomics, is the bias of purine/pyrimidine conserving substitutions (transitions) over purine/pyrimidine altering substitutions (transversions). Traditionally, this transitional bias has been thought to be driven by the underlying rates of DNA mutation and/or repair. However,(More)
BACKGROUND The accuracy by which phenotype can be reproduced by genotype potentially is important in determining the stability, environmental sensitivity, and evolvability of morphology and other phenotypic traits. Because two sides of an individual represent independent development of the phenotype under identical genetic and environmental conditions,(More)
Previous work on fluctuating asymmetry (FA) has highlighted its controversial relationship with environmental stress and genetic architecture. While size-based measures of FA have been assumed to have half-normal distributions within populations, studies of model developmental mechanisms have suggested other plausible distributions for FA. We investigated(More)
While mRNA stability has been demonstrated to control rates of translation, generating both global and local synonymous codon biases in many unicellular organisms, this explanation cannot adequately explain why codon bias strongly tracks neighboring intergene GC content; suggesting that structural dynamics of DNA might also influence codon choice. Because(More)
Despite our long familiarity with how the genetic code specifies the amino acid sequence, we still know little about why it is organized in the way that it is. Contrary to the view that the organization of the genetic code is a "frozen accident" of evolution, recent studies have demonstrated that it is highly nonrandom, with implications for both codon(More)
It is now widely-accepted that DNA sequences defining DNA-protein interactions functionally depend upon local biophysical features of DNA backbone that are important in defining sites of binding interaction in the genome (e.g. DNA shape, charge and intrinsic dynamics). However, these physical features of DNA polymer are not directly apparent when analyzing(More)
  • 1