Gregor Thalhammer

Learn More
We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by Fedichev et al. [Phys. Rev. Lett. 77, 2913 (1996)]. In our experiment, atoms in a 87Rb condensate are exposed to laser light which is tuned close to the transition frequency to an excited molecular state. By controlling the power and detuning of the laser(More)
We have created and trapped a pure sample of Feshbach molecules in a three-dimensional optical lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into molecules. The lattice shields the trapped molecules from(More)
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred ultracold (87)Rb(2) Feshbach molecules into a more deeply bound vibrational quantum level. Our measurements indicate a high transfer efficiency of up to 87%. Because the molecules are held in an optical lattice with not more than a single molecule per lattice(More)
Force spectroscopy has become an indispensable tool to unravel the structural and mechanochemical properties of biomolecules. Here we extend the force spectroscopy toolbox with an acoustic manipulation device that can exert forces from subpiconewtons to hundreds of piconewtons on thousands of biomolecules in parallel, with submillisecond response time and(More)
Throughout physics, stable composite objects are usually formed by way of attractive forces, which allow the constituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in a structured environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even(More)
Nematic liquid crystal spatial light modulators (SLMs) with fast switching times and high diffraction efficiency are important to various applications ranging from optical beam steering and adaptive optics to optical tweezers. Here we demonstrate the great benefits that can be derived in terms of speed enhancement without loss of diffraction efficiency from(More)
Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm(More)
Holographic optical tweezers typically require microscope objectives with high numerical aperture and thus usually suffer from the disadvantage of a small field of view and a small working distance. We experimentally investigate an optical mirror trap that is created after reflection of two holographically shaped collinear beams on a mirror. This approach(More)
We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve almost homogeneous trapping conditions over the full transport length, which is necessary to hold the atoms against gravity for such a wide range. Fast(More)
We have created a dark quantum superposition state of a Rb Bose-Einstein condensate and a degenerate gas of Rb2 ground-state molecules in a specific rovibrational state using two-color photo-association. As a signature for the decoupling of this coherent atom-molecule gas from the light field, we observe a striking suppression of photo-association loss. In(More)